© © N O o A W N =

Compositional Neural Network Verification via
Assume-Guarantee Reasoning

Anonymous Author(s)
Affiliation
Address

email

Abstract

Verifying the behavior of neural networks is necessary if developers are to con-
fidently deploy them as parts of mission-critical systems. Toward this end, re-
searchers have been actively developing a range of increasingly sophisticated and
scalable neural network verifiers. However, scaling verification to large networks
is challenging, at least in part due to the significant memory requirements of verifi-
cation algorithms. In this paper, we propose an assume-guarantee compositional
framework, CoVeNN, that is parameterized by an underlying verifier to generate
a sequence of verification sub-problems to address this challenge. We present
an iterative refinement-based strategy for computing assumptions that allow sub-
problems to retain sufficient accuracy. An evaluation using 7 neural networks
and a total of 140 property specifications demonstrates that CoVeNN can verify
nearly 7 times more problems than state-of-the-art verifiers. CoVeNN is available at:
https://anonymous.4open.science/r/CoVeNN-8FDO.

1 Introduction

Machine learning (ML) techniques are advancing rapidly and have reached a level of performance
across a range of challenging tasks, e.g., in the medical [} [2] and autonomous driving [3} 14} 5]
domains, that has led developers of critical systems to include ML models as components. To assure
that such systems are fit for deployment, researchers have developed a variety of formal verification
techniques to prove correctness properties of ML models, e.g., [6} (7,8} 19, 10} (111 [12].

Advances in neural network verification (NNV) have been dramatic since the landmark paper by
Katz et al. [6] which verified properties of models comprised of 6 linear layers. VNN-COMP [13} |14}
151 [16]] has chronicled those advances by documenting the growth of benchmarks and verifiers. The
largest benchmark in the competition, as measured by the number of layers, has grown from 6 to 21;
where all but 2-3 of those layers are convolutional. Although these networks present are challenging
for verifiers, they do not reflect the complexity of modern ML models.

While the number of layers in a network is not the only factor that contributes to the difficulty of
a verification problem, it is directly related to its exponential complexity [6]. For SoTA verifiers,
like a5-CROWN [8]], NeuralSAT [17], and PyRAT [18]], the worst-case involves each layer generating
multiple states which each serve as the starting point for verification of the suffix of the network from
that state forward. These verifiers perform a variety of optimizations to mitigate such state splitting,
e.g., by tightening state encodings [[19,[10]], but complexity grows with the depth of the model.

This complexity is manifest both in increased runtime and, perhaps more importantly, in memory uti-
lization. SOTA NNV tools make use of GPUs to efficiently manipulate high-dimensional abstractions
of model states and GPU memory is generally more limited than CPU memory—in our evaluation (§4)
GPU VRAM is limited to 24 GB. If verification requires more GPU memory than is available, then

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

https://anonymous.4open.science/r/CoVeNN-8FD0

36
37
38
39
40
41
42
43
44
45

46
47
48
49
50
51
52

53
54
55
56
57
58
59
60
61
62

63
64
65
66
67
68
69
70

71
72
73

74
75
76
77
78

79

80
81
82

83
84
85
86

the verifier will abort with an out-of-memory (OOM) error. shows the memory-consumption
of the two top performing verifiers in VNN-COMP’24: o3-CROWN and NeuralSAT, as they check
10 randomly generated local robustness properties of ResNet models trained on CIFAR10, with an
increasing number of residual blocks in each model. The x-axis corresponds to the number of blocks
within the model (e.g., 16 corresponds to ResNet-50 [20]). The y-axis plots the maximum memory
consumed, as a percentage of 24 GB, by the verifier across the 10 verification problems. A point in
the plot is shown if the verifier returns normally on any problem, regardless of whether the result is
verified or unknown. af-CROWN and NeuralSAT are able to verify all problems up to 9 blocks,
but beyond that they exhaust memory. While GPU memory has grown slowly over time, the pace of
that growth cannot be relied on for scaling to large neural network verification problems.

In this paper, we introduce a framework for Compositional
Verification of Neural Networks (CoVeNN) that can be pa-
rameterized by an underlying NNV tool, like a,5-CROWN
and NeuralSAT. CoVeNN works by decomposing a neural
network into subnetworks that are then verified indepen-

Memory (%)

dently. As depicted in[Fig. 1] this allows CoVeNN to scale === CoVeNNyg
to larger networks than the underlying verifier. —— NewalSAT
— «af-CROWN

The key to CoVeNN is the ability to encode the verification
of the subnetworks as a sqries of assume-guarantee rea- 0 & 10 15 20 25 30 35 40
soning steps. After verifying each subnetwork, CoVeNN #Blocks

merges relevant verifier states, such as approximation

bounds, into a compact summary that serves as the as- Fig. 1: Tools’ scalability on ResNet-based
sumption for the next subnetwork. The corresponding instances. Maximum memory usage across
guarantee ensures that, under this assumption, the subnet- 10 CIFAR10-based properties and ResNet-
work behaves correctly. Together, these assume-guarantee ~ based networks with increasing numbers of
pairs are composed to establish the correctness of the full ~blocks, comprised of 3 CNNs with ReLUs.
network.

State merging is a classic approach for managing the cost of analysis and verification [21]], but it
risks introducing overapproximation that may prevent properties from being proven. To mitigate
this, CoVeNN incorporates multiple refinement strategies that sharpen the precision of assumptions.
As detailed in CoVeNN matches the ability of underlying verifiers on problems for which
they complete and the refinement strategies allow it to prove properties when scaling to much larger
networks. CoVeNN does introduce overhead relative to the underlying verifier, but our evaluation (§4)
on a set of challenging verification problems shows that substantial reduction in memory consumption
translates to a significant increase in the ability to verify problems without an exorbitant time penalty.

Related Work NNV is still a relatively young field, and few lines of work have explored composi-
tional NN verification [22, [23]]. However, no prior technique can handle the scale or complexity of
networks like RESNET36. We discuss these work and others in more detail in

Contributions The primary contribution of this paper lies in the definition of a verifier-independent
framework for compositional assume-guarantee verification of neural network properties. We imple-
ment and evaluate CoVeNN’s ability to reduce verifier memory consumption and increase the number
of properties proven (§4) and assess overall performance of CoVeNN relative to SOTA DNN verifiers
on verification problems formulated over variants of neural network architectures.

2 Background

DNN Verification Verification of networks using piecewise-linear activation (e.g., ReLU) can be
represented as a satisfiability problem [6}, [T} (17, [10]. For an L-layer ReLU-based network A with
N neurons in layer [/, the formula:

o= /\ Ui,j = max (Z (wi_l_jyk . vi—l,j) -+ biﬁj, O)

i€[1,L]; j€[1,N] ke[1,Ni]

defines the network. Given « and a property ¢ = ¢, = ¢our @ DNN verification problem is
formulated by checking the satisfiability: a A ¢;, A =¢q:. If it is unsatisfiable, then ¢ is a valid
property of A/. Otherwise, ¢ is not valid and a counterexample—a witness that ¢ is not valid—-is a
satisfying assignment to the input variables in ¢;,,.

87
88
89
90
91
92
93
94
95

96
97
98
99
100
101
102
103

104

106
107
108
109
110
111
112
113
114

115

116
117
118
119

120
121
122
123

124

125
126
127

128
129
130
131
132
133

DNN Verifiers Modern DNN verifiers [18, [12} [11} 9l [10} 8] adopt techniques from abstract
interpretation [24] for efficiency. Since most properties studied in previous work can be expressed as
a Boolean expression over a linear equation of A/’s outputs, where ¢,,; can be merged as the last
layer of NV to produce an objective function f := @ o N [19L 9], the final goal reduces to prove:
Vr € ¢ipn ¢ f(x) > 0. Solving min,ey,, f(x) is challenging due to the non-linearity of DNNs.
Modern DNN verifiers overapproximate nonlinear computations of A to efficiently estimate the
lower bound of f(z), denoted as Ib, i.e., V& € ¢y, : Ib < f(x), then providing [b > 0 is sufficient to
formally prove f(x) > 0. This allows abstraction-based DNN verifiers to side-step the disjunctive
splitting that is the performance bottleneck of constraint-based DNN verifiers.

Compositional Verification For more than four decades researchers have been investigating
compositional methods to scale verification of complex systems [25]. One widely used compositional
approach, termed rely-guarantee or assume-guarantee reasoning, was introduced by Stark [26]]. For a
system M with a specification ¢, the goal is to prove ¢;,, M = ¢,,.—we denote such a proof goal
with the triple (¢, M, ¢poy+). Compositional reasoning divides a system into parts, { M, ..., My},
and formulates a set of local verification problems (A;, M;, G;) such that the guarantees of one
component implies the assumptions of another and ¢;,, and ¢,,,; are the assumption of the first and
guarantee of the final components, respectively.

The promise of compositional methods is that they can reduce the complexity of verification by
replacing reasoning about the product of the M; with reasoning about their sum. However, realizing
such a framework is non-trivial: it requires suitable rules to relate the guarantees of one component
to the assumptions of another, careful selection of decomposition strategies to achieve cost-effective
verification [27], and the identification of appropriate assumptions A; [28]. CoVeNN addresses these
challenges by exploiting the inherent sequential structure of neural architectures to define composi-
tional proof rules tailored to layer-wise reasoning, adaptively selecting the degree of decomposition
to maximize proof completion, and iteratively refining assumptions to support verification. Our
approach builds on recent work in neural network verification by leveraging modern verifiers’ ability
to compute tight overapproximations of intermediate outputs, which we then use as assumptions for
verifying subsequent layers.

3 Compositional Verification of Neural Networks

[Alg. T|shows the CoVeNN algorithm, which takes as input the DNN N, the formulae ¢;, = ¢out
representing the property to be proven, the factor P indicating the number of generating assumptions,
the scale factor F’ for constructing assumptions, and the number of iterative rounds r. CoVeNN returns
unsat if ¢ is a valid property of N, and unknown otherwise.

CoVeNN consists of three main phases: (i) decomposing the original network into subnetworks ([ine T,
(ii) computing a coarse overapproximation of intermediate assumptions (line 2Hline 4)), then checking
the last subnetwork , and (iii) refining the assumptions iteratively until the problem can be

verified (line 12Hline 18)). The following sections describe each phase in detail.

3.1 Decomposition

CoVeNN starts by splitting the original network into K subnetworks (N1, ..., N'i) (line T), where K
is internally inferred by CoVeNN using the heuristics described below. This step reduces verification
complexity by enabling the sequential verification of smaller, more manageable subnetworks.

More formally, decomposition works as follows. A network, N, is defined by a computation graph,
G, whose nodes define computations, e.g., matrix multiplication, and whose edges describe data flow
between computations. We restrict our attention to acyclic computation graphs, which are common
in many classes of ML models. Our approach supports any decomposition into k subnetworks such
that: N := Ny o N_1 0...0 N1, and the input nodes of each \; define a cut of G [29]. Given
such a decomposition a simple proof rule for sequential composition can be defined:

<A7Nh[>
(I, Nit1,G) (1
<A7Ni+1 ON'L'aG>

BOW N =

[

Alg. 1: CoVeNN algorithm.

input :Verifier V, DNN N, property ¢in, = ¢out, number of neurons P, scale factor F' and rounds r
output :unsat if the property is valid and unknown otherwise

(N1, ...,NK) — decomposeNetwork(N) // automatically split N into K subnetworks
Yover < [szn}

fori e [1, 7K] do // initialize coarse overapproximation for each subnetwork
| Yover-append(overApproximate(N;, Yover[i — 1]))

lb — V.CheCk(’YDUET[K],¢out) // check last subnetwork overapproximation w.r.t. output property

6 if all(lb > 0) then // check if last subnetwork is verified

=

-l

134
135
136
137

138
139
140
141
142
143
144
145
146

147

148
149
150
151
152

153

154

156

157
158
159

| return unsat // (¢, N, doui) is valid
while » > 0 do
for i € [1, 7I{ — 1] do // attempt to verify first K — 1 subnetworks
Yassume < generateAssumption(N;, Yover[t — 1], Yover[], Py F) // see
b+ V.verify(/\/'i,’yover[i — 1]7'Yassume) // verify assumptions (Vin, Ni, Yassume

(LOUET, Uover) — 'Yover[i] // extract bounds to refine (tighten)
for {(i, rhs, direction),li} € zip(Yassume,b) d0 // refine assumption for each neuron i-th

if direction = “ >"then // assume Y; > rhs, guarantee Y; rhs > li
L Lover[i] < rhs + l7
else // assume V; < rhs, guarantee —Y; + rhs > i

| Uover[d] < rhs —li

’Yover[i} — (Lovem Uover) // update refined (tightened) bounds

lb — V.verify(NK,’ym,er[K — 1], ¢out) // verify last subnetwork
if all(lb > 0) then // check if last subnetwork is verified
| return unsat // (i, N, doui) is valid

| r<r—1

return unknown

For a k-way decomposed network, the rule is applied k times with carefully chosen intermediate
assumptions I, each serving as the guarantee of one step and the assumption of the next. If the first
assumption is A = ¢;,, and the final guarantee is G = ¢, then verifying all subnetworks implies
that the original network satisfies ¢;,, = dout.

Decomposing Heuristics A neural network can be decomposed into k& subnetworks in various ways,
and the success of compositional reasoning depends largely on how it is decomposed [27]. CoVeNN
uses four heuristics to automatically guide this choice. We prioritize (1) cuts that define the inputs
of layers in the network, because this leads to subnetworks that have input/output shapes that are
well-supported by existing verifiers; (2) minimum cuts, because these reduce the dimensionality of
the intermediate assumption, I; (3) cuts that are later in the network — a cut, co, is later than cut, ¢y, if
all vertices in ¢y are dominated by some node in c;, because this reduces imprecision in computation
of I; and (4) cuts that yield the largest subnetworks that are amenable to verification by existing
verifiers, because this minimizes the number of subnetworks that need to be verified.

3.2 Bound Approximations and Verification

CoVeNN next performs an initial, coarse overapproximation for each subnetwork sequentially
(line 2Hline 4)). This is done using an off-the-shelf verifier V—typically a modern BaB-based
tool such as a/3-CROWN[S8]] or NeuralSAT[I7]—which returns conservative output bounds based
on the current property. CoVeNN leverages the computed bounds to verify properties and guide the
iterative refinement discussed in[§3.3]

Once the overapproximations are computed, CoVeNN simply checks whether the approximation of
the last subnetwork satisfies the output property (line 3). As described in[§2] if V returns a lower
bound b > 0 (line 6), the property is verified and CoVeNN concludes unsat. Otherwise, it proceeds
with refinement to sharpen the result.

Although only the last subnetwork is being verified (since it directly relates to the original output
property), this verification depends on the approximations computed for the earlier K —1 subnetworks.
These serve as assumptions in a chain of assume-guarantee obligations. Each intermediate bound acts

160
161

162

163
164
165
166
167
168

169
170
171
172
173

174
175
176
177

178
179
180

181
182
183
184
185
186
187
188

189

190

191
192
193

194
195

y .21
[}
[}
7 [}
-2 2] yl > Y2 —2;2] Y1> Y2 P :]
- 1
-7 . [}
() '@ - i K
i >
! " Sampled Region : 1
‘ , L sampie Usampié |
@ @ : L”M Interpolated Region U i !
-1;1 1;1
[3] N [] 1 2 Lover Over Approximation Uvver
(a) (b)

Fig. 2: (a) Example of a decomposed FC network with three hidden layers and (b) Regions of a hidden ReL.U.

as both a guarantee for its originating subnetwork and an assumption for the next. We will discuss
more about these assumptions and their refinement in the next section.

3.3 Iterative Refinement

In most cases, the initial approximation in|[§3.2]is too coarse to verify the property of interest. Thus,
CoVeNN enters the refinement phase (line 9fline 18]), which iteratively tightens the approximations until

the problem can be verified (e.g., returns unsat) or CoVeNN exceeds the maximum predefined rounds
T (e.g., returns unknown). CoVeNN’s refinement has three main steps: (1) generating assumptions, (2)
verifying assumptions, (3) refining assumptions. The algorithm makes up to r iterations comprised of
sequentially verifying each subnetwork.

Generate Assumptions For each subnetwork N;, assumptions v,ssume are generated (line 10)
based on its input conditions and pre-computed overapproximation following the procedure in|Alg. 2|

CoVeNN automates the generation of assumptions by systematically interpolating between coarse
overapproximations and tight sample-driven bounds on subnetwork outputs, as detailed in[Apdx. C|
These assumptions reflect the possible output behavior of A; given the input property ;.

Verify Assumptions CoVeNN attempts to verify ~ussume Of the subnetwork N;, or
(Vins Ni, Yassume)» using the verifier V (line 11). As described above, CoVeNN extracts the lower
bound [b from the verifier to facilitate this task. If verify an assumption fails (i.e., [b < 0), Vassume 18
invalid and CoVeNN refines them using verified [b (line 12f{line T8).

Refine Assumptions This refinement adjusts the assumptions to eliminate unverified regions,
making them hold for the current preconditions and subnetwork. Refined assumptions then are
propagated forward serving as input property for the next subnetwork.

When an estimated assumption v, ssume (lIne 10) cannot be verified, we need to refine it so that it
becomes valid. Particularly, line 18| outlines CoVeNN’s refinement method, which adjusts
Yassume Using the formally verified lower bounds [b. CoVeNN first identifies the direction of the
inequality to decide the appropriate refinement strategy. If the direction is “>”, the assumption
being verified is of the form Y; > rhs (line T4). The verifier V has only formally confirmed that
Y; — rhs > li, where lv < 0, meaning that Y; is greater than or equal to rhs adjusted by the lower
bound [i. Therefore, to make that assumption valid, the right-hand side value is loosened as rhs + i

(line T3)). A dual of this process is used to refine the upper bounds.

3.4 Example

We illustrate CoVeNN by verifying that NV, depicted in has the property:
P=in = Gout =(—2< 21 <2A-1 <23 <1) = (y1 > ¥2) 2
When given the network N and the property ¢, CoVeNN first attempts to prove A = ¢, denoted by

the triple (@in, N, dout), using an underlying verifier V. Suppose V fails to verify the property due
to memory exhaustion.

CoVeNN now decomposes A into two subnetworks (fine T), A’y and Vs, such that V' = N5 o N
as shown in[Fig. 2a] Next, CoVeNN uses V' to compute an output overapproximation for the K — 1

196
197
198
199

200
201
202

203
204
205
206
207
208
209
210
211

212
213
214
215
216

217

218
219
220
221

222
223

224
225
226
227

228
229
230
231

232
233
234

235
236
237

238

239
240

subnetworks from the input condition ¢;,, (line 3Hline 4). We call the computed constraint an
assumption and use 7; to denote the assumption computed for network 7. For this example, v; =
—5 < ng; < 5A—-10 < nge < 10. Since this assumption initially is an overapproximation, a
consequence of this is that } has produced proof of {¢;,,, N'1,~1) inherently.

Once CoVeNN reaches the final subnetwork, it uses V to check the last overapproximation w.r.t. the
output property (line 3)), e.g., doys. If this succeeds then we have a proof that (¢;y,, N, poue). In this
case, this does not succeed, so CoVeNN attempts to refine the assumption (line 8}{line 22).

Refinement proceeds by sampling the behavior of N, subject to ¢;,,, and computes a hyperrectangle
that tightly approximates sampled outputs; [Fig. 2b|depicts this sampled region in red. In the example,
let this sampled assumption be 01 = —2 < ngy; < 2 A —4 < nge < 4. Since this is a tight
approximation of the sampled behavior the likelihood that it is a valid postcondition of Ay is low.
We address this by interpolating between it and the overapproximating region to determine a new
assumption (line 10), 7] such that 7, D v} O oy. With hyperrectangular constraints one approach is
to simply scale the sampled region,y; = s - (y1 — 01) + 01, by some predefined factor, s € [0, 1].
[Fig. 2bldepicts an interpolated region in green with a scaling factor of 0.5. In our example, this new
assumption is 7] = —3 < mg; < 3 A —5 < ngs < 5 and we use V to verify {pi,, N'1,71) .

If this succeeds, then CoVeNN uses V to attempt to verify (v}, N2, ¢ous) (line 19i. If it fails we

exploit the output bounds computed by V to generate a valid assumption (line 12Hline 18): 7} =
(=4 < ngy < 4N =T < ng <7) and CoVeNN then seeks to verify (v{, Na, dout) (line 19). In
this example that verification succeeds, thereby completely the proof of (¢, N, ¢oys) through a
sequence of simpler verification problems.

3.5 Formal Correctness

The correctness of CoVeNN is based on the soundness of the assume-guarantee decomposition (§3.1))
and the iterative refinement of the assumptions (§3.3). Note that we assume that the underlying
verifier V is sound, i.e., its overapproximations are valid (§3.2). Below we provide the theorems and
proof sketches for the soundness of CoVeNN, the full proofs are provided in[Apdx. B]

Compositional Verification The following states that the chain of assumptions and guarantees of
subnetworks (§3.1) proves the original property ¢;, = ¢o.: of the entire network A

Thm. 1 (Compositional Verification via Assume-Guarantee Reasoning). Given a neural network
N : R® — R™ decomposed into K subnetworks such that N' = N o --- o N1, a property
O = Din = Pout, and intermediate predicates V1, . . . , Yk —1, where Yo = @i and Vg = Gout, the
global specification holds whenever the every local property is valid:

K
(/\ <’Yk17Nka’yk>> - <¢inaN7 ¢out>

k=1

Proof Sketch. For each pair of adjacent networks as shown in[Eq. T| assume-guarantee obligations are
proved, establishing that each intermediate predicate vy, is preserved under corresponding subnetwork
N. Composing these local guarantees forms a chain from the input property ¢, to the output
property ¢...+, showing that the global specification holds for the entire network. O

Refinement Process The following states that the refinement process (§3.3) states that each
refinement step always results in bounds that are formally valid, thereby ensuring that the iterative
tightening of assumptions preserves correctness throughout the verification chain.

Thm. 2 (Soundness of Iterative Bound Refinement). Suppose the base verifier V soundly establishes,
for a neuron'Y;, a right-hand side rhs, a direction K€ {>, <}, and a corresponding verifier bound
0 (where § < 0 for “>” and § > 0 for “<”), that Y; — rhs < 0. Then, the refined inequality

Y, < (rhs+9)
is verified. Therefore, updating the right-hand side to rhs + ¢ yields a verified assumption by V.

Proof Sketch. Given that the verifier soundly proves Y; — rhs < 0, it follows that Y; < (rhs +9)
holds. Updating the bound accordingly yields a refined assumption that remains sound. O

241
242
243

244
245
246
247

248
249
250

251

252
253
254

256
257

258
259
260
261
262
263
264

265

267
268
269

270

271
272
273
274
275

Tab. 1: Benchmark instances.

Benchmark Layers Neurons Parameters Instances (U/S/?)

VAE_BASE 20 43K 10K 20/0/0
VAE_WIDE 20 86K 39K 20/0/0
VAE_DEEP 28 44K 15K 7/0/13
RESNET6 20 283K 113K 11/0/9
RESNET12 38 627K 230K 9/0/11
RESNET18 56 700K 348K 18/0/2
RESNET36 110 1032K 706K 13/0/7
Total 98/0/42

Soundness of CoVeNN The following combines the previous two theorems to show that CoVeNN
is sound: if all local subproblems generated during decomposition are either formally verified or
refined, then the global property holds for the original network.

Thm. 3 (Soundness of CoVeNN). Let N be a neural network and ¢;y,, pous be input/output properties
such that CoVeNN verifies N satisfies ¢iy = Pous. CoVeNN applies to decompose N and
assume all local subproblems are formally verified by a sound underlying verifier V or formally

refined as Then N indeed satisfies ¢, = Gout.

Proof Sketch. CoVeNN decomposes the network into subnetworks and verifies a sequence of assume-
guarantee obligations using a sound verifier. By composing these verified local implications, the
global property ¢in = oy follows. O

4 Evaluation

We evaluate the scalability and cost-effectiveness of CoVeNN based on three research questions on
CoVeNN’s performance compared to state-of-the-art verifiers (RQ1) ; the effectiveness of refinement
(§3.3) (RQ2); and CoVeNN’s robustness to variations in the underlying verifier (RQ3).

Underlying Verifiers We experiment with two variants of CoVeNN, each configured with a different
underlying verifier: NeuralSAT and «/3-CROWN. Both tools are state-of-the-art in DNN Veriﬁcatio
and allow us to extract the lower bound estimates needed for CoVeNN’s refinement process.

Benchmarks We use two scalable families of benchmarks (Apdx. E). [Tab. 1| provides details on the
variants of the ResNet and VAE benchmarks used in our experiments. For each network, we generated
20 robustness properties. For ResNets these are local robustness classification properties and for
VAE:s these are local reconstruction robustness properties (Apdx. A). Across the 140 combinations
of networks and properties: 98 are known to be unsat (U), none of them are sat (S), and of the
remaining 42 instances no verifier in our study was able to solve the problem (?). Note that robustness
properties can vary significantly in complexity based on the centerpoint and ¢, e.g., [30, Fig. 2].

Setup Our experiments were run on a Linux machine with an AMD Ryzen Threadripper PRO
5975WX 32-Core, 128 GB RAM, and an NVIDIA GeForce RTX 4090 GPU with 24 GB VRAM.
Timeout for a single instance is set to 3600 seconds or the maximum number of rounds r is 4.
Note that our results are deterministic and no random process is involved. We describe detailed
configuration and model information for our experiments in

4.1 RQI1: Comparing to Non-Compositional SoTA Verifiers

[Tab. 2|presents the results of running both CoVeNN variants (CoVeNNys and CoVeNN5), CoVeNNgefime—
a naive version of CoVeNN without refinement using the NeuralSAT backend, and the standalone
NeuralSAT and a3-CROWN verifiers on the benchmarks. Column V shows the number of prob-
lems verified with the percentage solved shown in column %. Column K shows the number of
decompositions inferred by CoVeNN. Tools that run out of memory or time out on a benchmark are

'See results in the VNN-COMP’24 report [15] Tab. 35]. PyRAT is commercial and has no available code.

276
277
278
279
280
281
282
283

284
285
286
287

289
290

291

292
293
294
295

297

298

300

301
302

Tab. 2: Comparing CoVeNN to SoTA verifiers; most solved problems in bold.

V % K|V % K|V % K|V % K|V % K|V % K|V % K|V %
CoVeNNys |20 100.0 1-2[19 950 2 |5 250 2 |11 550 1|9 450 2 |18 90.0 2 [13 650 3 |95 67.9

Verifier ‘ VAE_BASE | VAE_WIDE VAE_DEEP‘ RESNET6 | RESNET12 | RESNET18 | RESNET36 | Overall

CoVelNN,g \ 4 200 2 \ - - - \6 30.0 2 \10 50.0 1 \9 450 2 \17 850 2 \13 65.0 3 \59 42.1
CoVeMNgegre| 3 150 1 |- - - |- - - [11 550 1|9 450 2 |9 450 2|13 650 3 |45 32.1
NeuralSAT |3 150 I |- - - |- - - |11550 1|- - -]- - -|- - -]|14 100
af-CROWN [1 50 1]- - ~-|- - -[10500 1[- - ~-|- - -|[- - -|11 79
3500 P
—— NeuralSAT (125 [ResNet
3000 f —— aB-CROWN T i VAE
. —— CoVeNNyg I 100 e
a 25001 CoVeNNgegre | | < |_| l
52000— — CoVeNNag -t i: 75 J
E o0 g °
5 £ 50
5 10001 - -
0] | 21
| - T | | | | | °
01— i 1 B E— I — 1 01 . . .
0 10 20 30 40 50 60 70 80 90 100 NewralSAT ~ a3-CROWN CoVeNNyg
(a) Solved problems sorted by runtime. (b) Average memory usage per verifier.

Fig. 3: CoVeNN performance compared to SOTA verifiers.

indicated with a “-” (e.g., NeuralSAT cannot solve any instances of RESNET12 and VAE_DEEP,
etc.). Across the benchmarks CoVeNN solves more than 6 times the number of problems than the
best non-compositional solver. We note that neither NeuralSAT nor t3-CROWN could solve any
instances of VAE_WIDE, VAE_DEEP, RESNET12 and beyond, which demonstrates the ability of
CoVeNN to scale verification beyond the state-of-the-art. RESNET36, which is comprised of 110
convolutional layers, requires the most aggressive decomposition (X = 3), but even for such a large
network CoVeNN is able to verify 65% of the properties. CoVeNNgegre performs better than standalone
verifiers, but falls short of any CoVeNN variants, demonstrating the importance of refinement (§4.2).

[Fig. 3al and [F1g. 3b| provide additional details on runtime and memory usage. [Fig. 3al shows that
regardless of the underlying solver or whether CoVeNN uses its refinement strategy (§3.3) it can

solve many more problems than NeuralSAT and ovf-CROWN within the same time constraints. While
NeuralSAT and a3-CROWN reach their limits after solving 14 problems, CoVeNN solves as many
as 95 instances. shows that CoVeNN consumes significantly less memoryﬂ than NeuralSAT
and a3-CROWN, which often encounter OOM errors. reports on a more detailed parameter and
ablation study of CoVeNN on these benchmarks.

4.2 RQ2: On the Effectiveness of Assumption Refinement

shows that even without refinement, CoVeNNgegre solves nearly 4 times as many problems
as SoTA methods and that this rises to nearly 7 times with refinement enabled. To explore how
refinement achieves this we recorded additional data on the refinement process. reports,
for each problem where K > 1, the percentage of neurons that were tightened in some round of
refinement (red); the percentage by which the output ranges of those neurons were reduced (blue);
and number of rounds of refinement performed (green - on the 2nd y-axis).

For the VAE benchmarks, 17 of the BASE problems and all of the other problems involved refinement.
There were more rounds of refinement and, except for the DEEP benchmark, this resulted in a high
percentage of tightened neurons and significant output range reduction. For the DEEP benchmark,
rounds of refinement continued until the timeout was reached on 15 of the 20 problems. For the
RESNET benchmarks, we observe a very different profile. Fewer rounds of refinement were needed,

Measured by the internal function torch.cuda.mem_get_info in PyTorch.

303
304
305
306
307
308

309

310
311
312

313
314
315
316
317
318
319
320

321
322
323

324

325

326
327
328
329

330
331
332
333
334

335
336
337

100 1 . T
904 9068

80 I 80.78

70 1

[Tightened Neurons
I Neuron Output Reduction
[

J—
T

w

Refinement Rounds

g
o 60 g
‘Ep 501 >t © 1.9 o 2:5
g 40
g 30 1 31.2 © o “
T o 21.0) ° 18.6 Q g &
104 T ’ 0.6 0.6 0.5
0 7.0885.3 . 5.9 6 Hés_z L1 Lo
VAE BASE VAE WIDE VAE_DEEP RESNET12 RESNET18 RESNET36

Fig. 4: Percentage of neurons tightened and percentage of their output range reduction.

especially for RESNET18 which was able to prove 18 of the 20 problems. This is more than
double the amount that could be proven with refinement disabled. The verification problems are
randomly sampled across all benchmarks which leads to different performance profiles. The data
for RESNET12 and RESNET36 demonstrate that for some problems the compositional nature of
CoVeNN alone can lead to verification improvements (see the CoVeNNgesine row in [Tab. 2), but the
additional effort of refinement does not yield further improvements.

4.3 RQ3: Robustness to Underlying Verifiers

[Tab. 2| clearly indicates that CoVeNN significantly increase the number of solved problems regardless
of the underlying verifier. While CoVeNNys outperforms CoVeNN,, g, our analysis suggests that this is
not a fundamental limitation of either CoVeNN or a5-CROWN.

We analyzed the performance of CoVeNN,3 on VAE_BASE and VAE_WIDE, the cases where there
was a substantial performance gap. We found that «5-CROWN does not support ConvTranspose
layers in several of its heuristics for applying optimizations. This means that its performance in both
verifying assumptions and verifying the final subnetwork line T9]suffer. We conjecture that
better support for this layer type could ameliorate this issue, but we acknowledge that «v/5-CROWN has
numerous hyperparameters and we did not perform the type of expert tuning that the developers of
a-CROWN apply when running benchmarks. The reduced performance on VAE benchmarks could
be due to this as well.

The RESNET benchmarks show a clearer trend. «3-CROWN comes with hyperparameter settings
for this architecture which we reuse, and we see very consistent degrees of improved scalability
regardless of the underlying verifier.

In summary, (RQ1) CoVeNN verifies over 6x more problems than SOTA verifiers and scales
to deeper networks with less memory, highlighting the effectiveness of decomposition. (RQ2)
Refinement significantly boosts performance: CoVeNNgesne already outperforms SoTA by 4x, and
refinement raises this to nearly 7x. (RQ3) CoVeNN significantly improves verification regardless of
underlying solvers (performance gaps depend on the backends, not from CoVeNN itself).

5 Conclusion

NNV has scaled tremendously in recent years, but networks continue to grow in complexity which
limits the applicability of SOTA NNV techniques to real-world networks. Our work on CoVeNN is
a first step in realizing the promise of compositional neural network verification, and preliminary
results show that CoVeNN can scale significantly beyond SoTA verifiers.

Limitations We plan a broader exploration of the impact of parameters of the framework and to
develop adaptive strategies for selecting parameters, such as decomposing heuristics, the number
of neurons P and interpolation factor F', for each sub-problem. More broadly, our framework does
not currently use feedback from counterexamples, but we plan to explore how they can be used to
identify the dimensions within an assumption that must be tightened to eliminate violations.

Potential Negative Societal Impact The techniques developed in this work can reveal flaws in
sensitive applications that may be exploited for malicious intent. However, these same methods also
allow developers to identify such attacks and fix them prior to model deployment.

338

339
340

341
342
343
344

345
346
347

348
349
350

352
353

354
355
356

357
358
359

360
361

362
363
364

365
366

367
368

370
371

372

374

375
376

377
378

379
380
381

382
383

384

385
386
387

References

[1] R. Wang, T. Lei, R. Cui, B. Zhang, H. Meng, and A. K. Nandi, “Medical image segmentation
using deep learning: A survey,” IET Image Processing, vol. 16, no. 5, pp. 1243-1267, 2022.

[2] B. Kovatchev, A. Castillo, E. Pryor, L. L. Kollar, C. L. Barnett, M. D. DeBoer, S. A. Brown,
and N. S. Team, “Neural-net artificial pancreas: a randomized crossover trial of a first-in-class
automated insulin delivery algorithm,” Diabetes Technology & Therapeutics, vol. 26, no. 6,
pp- 375-382, 2024.

[3] L. Zhang, A. J. Yang, Y. Xiong, S. Casas, B. Yang, M. Ren, and R. Urtasun, “Towards
unsupervised object detection from lidar point clouds,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9317-9328, 2023.

[4] P. Wu, X. Jia, L. Chen, J. Yan, H. Li, and Y. Qiao, “Trajectory-guided control prediction for
end-to-end autonomous driving: A simple yet strong baseline,” Advances in Neural Information
Processing Systems, vol. 35, pp. 6119-6132, 2022.

[5] H. Shao, L. Wang, R. Chen, H. Li, and Y. Liu, “Safety-enhanced autonomous driving using
interpretable sensor fusion transformer,” in Conference on Robot Learning, pp. 726737, PMLR,
2023.

[6] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer, “Reluplex: An efficient SMT
solver for verifying deep neural networks,” in International Conference on Computer Aided
Verification, pp. 97-117, Springer, 2017.

[7] R. Bunel, P. Mudigonda, 1. Turkaslan, P. Torr, J. Lu, and P. Kohli, “Branch and bound for
piecewise linear neural network verification,” Journal of Machine Learning Research, vol. 21,
no. 2020, 2020.

[8] D. Zhou, C. Brix, G. A. Hanasusanto, and H. Zhang, “Scalable neural network verification with
branch-and-bound inferred cutting planes,” arXiv preprint arXiv:2501.00200, 2024.

[9] C. Ferrari, M. N. Mueller, N. Jovanovié, and M. Vechev, “Complete Verification via Multi-
Neuron Relaxation Guided Branch-and-Bound,” in International Conference on Learning
Representations, 2022.

[10] H. Duong, D. Xu, T. Nguyen, and M. B. Dwyer, “Harnessing neuron stability to improve dnn
verification,” Proc. ACM Softw. Eng., vol. 1, no. FSE, 2024.

[11] H. Wu, O. Isac, A. Zelji¢, T. Tagomori, M. Daggitt, W. Kokke, 1. Refaeli, G. Amir, K. Julian,
S. Bassan, et al., “Marabou 2.0: a versatile formal analyzer of neural networks,” in International
Conference on Computer Aided Verification, pp. 249-264, Springer, 2024.

[12] S. Bak, “nnenum: Verification of ReLLU Neural Networks with Optimized Abstraction Refine-
ment,” in NASA Formal Methods Symposium, pp. 19-36, Springer, 2021.

[13] C. Brix, M. N. Miiller, S. Bak, T. T. Johnson, and C. Liu, “First three years of the international
verification of neural networks competition (VNN-COMP),” International Journal on Software
Tools for Technology Transfer, pp. 1-11, 2023.

[14] C. Brix, S. Bak, C. Liu, and T. T. Johnson, “The Fourth International Verification of Neural
Networks Competition (VNN-COMP 2023): Summary and Results,” 2023.

[15] C.Brix, S. Bak, T. T. Johnson, and H. Wu, “The fifth international verification of neural networks
competition (van-comp 2024): Summary and results,” arXiv preprint arXiv:2412.19985, 2024.

[16] S. Bak, C. Liu, and T. Johnson, “The Second International verification of Neural Networks
Competition (VNN-COMP 2021): Summary and Results,” arXiv preprint arXiv:2109.00498,
2021.

[17] H. Duong, T. Nguyen, and M. Dwyer, “A DPLL(T) Framework for Verifying Deep Neural
Networks,” arXiv preprint arXiv:2307.10266, 2024.

[18] PyRAT, “A tool to analyze the robustness and safety of neural networks,” 2024.

[19] H. Zhang, S. Wang, K. Xu, L. Li, B. Li, S. Jana, C.-J. Hsieh, and J. Z. Kolter, “General
cutting planes for bound-propagation-based neural network verification,” Proceedings of the
36th International Conference on Neural Information Processing Systems, 2022.

10

388
389
390

391

394

403
404
405

406
407
408

409
410
411

412
413

414
415
416
417

418
419
420
421

422
423
424

425
426
427

428

429
430
431

432
433

434
435
436

437
438

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778,
2016.

[21] F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program Analysis. Springer, 1999.

[22] D. Gopinath, H. Converse, C. Pasareanu, and A. Taly, “Property inference for deep neural net-
works,” in 2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pp. 797-809, IEEE, 2019.

[23] R.Ivanov, K. Jothimurugan, S. Hsu, S. Vaidya, R. Alur, and O. Bastani, “Compositional learning
and verification of neural network controllers,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 20, no. 5s, pp. 1-26, 2021.

[24] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints,” in Proceedings of the 4th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages, pp. 238-252, 1977.

[25] J. Misra and K. M. Chandy, “Proofs of networks of processes,” IEEE transactions on software
engineering, no. 4, pp. 417426, 1981.

[26] E. W. Stark, “A proof technique for rely/guarantee properties,” in Foundations of Software
Technology and Theoretical Computer Science: Fifth Conference, New Delhi, India December
1618, 1985 Proceedings 5, pp. 369-391, Springer, 1985.

[27] J. M. Cobleigh, G. S. Avrunin, and L. A. Clarke, “Breaking up is hard to do: An evaluation
of automated assume-guarantee reasoning,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 17, no. 2, pp. 1-52, 2008.

[28] C.S. Pésédreanu, D. Giannakopoulou, M. G. Bobaru, J. M. Cobleigh, and H. Barringer, “Learning
to divide and conquer: applying the 1* algorithm to automate assume-guarantee reasoning,”
Formal Methods in System Design, vol. 32, pp. 175-205, 2008.

[29] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms. MIT
press, 2022.

[30] D. Xu, N. J. Mozumder, H. Duong, and M. Dwyer, “Training for verification: Increasing neuron
stability to scale DNN verification,” in Tools and Algorithms for the Construction and Analysis
of Systems - 30th International Conference, TACAS 2024, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS, p. to appear, Springer, 2024.

[31] F. Toledo, D. Shriver, S. Elbaum, and M. B. Dwyer, “Deeper notions of correctness in image-
based dnns: Lifting properties from pixel to entities,” in Proceedings of the 31st ACM Joint
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pp. 2122-2126, 2023.

[32] K. Ahmed, K.-W. Chang, and G. Van den Broeck, “A pseudo-semantic loss for autoregressive
models with logical constraints,” Advances in Neural Information Processing Systems, vol. 36,
2024.

[33] J. K. Christopher, S. Baek, and F. Fioretto, “Constrained synthesis with projected diffusion
models,” in The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024.

[34] D. P. Kingma, “Auto-encoding variational bayes,” arXiv preprint arXiv:1312.6114, 2013.

[35] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image
synthesis with latent diffusion models,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10684—10695, 2022.

[36] S.-i. Amari, “Backpropagation and stochastic gradient descent method,” Neurocomputing, vol. S,
no. 4-5, pp. 185-196, 1993.

[37] D. Xu, D. Shriver, M. B. Dwyer, and S. Elbaum, “Systematic Generation of Diverse Benchmarks
for DNN Verification,” in International Conference on Computer Aided Verification, pp. 97-121,
Springer, 2020.

[38] A. Loquercio, A. I. Maqueda, C. R. Del-Blanco, and D. Scaramuzza, “Dronet: Learning to fly
by driving,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 1088—1095, 2018.

11

439

440
441
442
443
444
445
446
447

448
449

450
451
452
453

454

456

457
458

459
460

461
462

463
464

465

466

467
468
469

470

A DNN Properties

For a neural network, ' : R™ — R™, specifications of functional properties constrain the output of
N based on its input. Specifying such necessary conditions for DNN input-output relations is a topic
of great interest with applications as test oracles in DNN testing [31], training objectives to maximize
network property conformance [32]], and biasing generative models to produce outputs that conform
to a property [33]]. A broad class of properties can be formulated using pairs of half-space polytopes —
each specified as the conjunction of cutting planes — where one set defines the pre-condition, ¢;,,,
and another the post-condition, ¢,,;. A variety of different properties can be formulated using such
pre-post condition pairs but we focus on two popular classes of properties below.

Classification Robustness A well-studied class of properties express local robustness properties of
the form:

Vp € [0,€] : N(x) = N(z £ p),

where z is a specific seed input, often chosen from the held out test dataset. These express that
network inference is invariant for perturbations within the convex e-ball, & p, for the seed input.
A variant of this, with a post-condition of the form || (z) — N (z + p)|| < B can be defined for
regression networks.

Reconstruction Robustness Generative models are formulated as neural networks, N/ : R"® — R",
and are trained to approximate the identify function [34}[35]. For such, models one can adapt the
regression robustness property above, to define a local reconstruction robustness property of the form:

for a seed input z. The /3 parameter expresses the expected agreement between an input and its
reconstruction.

B Correctness Proofs of CoVeNN

Let N : R™ — R™ denote a neural network, and let ¢;,, () and ¢, (y) be input and output property
of interest, respectively. The global verification objective is to prove:

Ve € R": ¢in(x) = dour (N (2)) 3)
Chain of Proofs. Given N, we decompose into K sequential subnetworks: N = Ng o N g1 o
-+~ o N1, where each N}, : R%-1 — R with dy = n and dg = m.

Let v := ¢4, and vx 1= ¢ous; We seek to synthesize K — 1 intermediate predicates (assumptions)
Y1, - - ., YK —1 over intermediate network states.

Following the classical assume-guarantee (sequential composition) proof principle, the global property
is entailed by the following chain of K local obligations:

Vh=1,....K: (v, N @

If all these obligations hold, we have:

K
(/\ <’Yk—1a-/\/'ka ’Yk>> - <¢inaN7 ¢out> 4)

k=1
Thus global verification is reduced to a finite sequence of smaller verification problems.
Automated Synthesis of Intermediate Assumptions. Given a subnetwork N, input constraint

Yin» an overapproximate output bound Yoper = (Lover, Uover), number of neurons P, and scale
factor F' € [0, 1], we synthesize the candidate assumption Y, ssyme as follows.

First, CoVeNN computes the sampled output region by solving:
Lsample = min Nk’ (1‘) Usample = max Nk (ZE) (6)
TEYin TEYin

12

471

472

473
474
475

476

477

478
479
480
481
482

491
492
493

494

495

496
497

498
499

500

501

503

where each minimization and maximization is performed through backpropagation.

Next, CoVeNN interpolates between the overapproximate and sampled bounds to obtain:
Lint = Lsamplc - F. (Lsample - Lover) Uint =F- (Uover - Usam,ple) + Usam,ple (7)

Let Select(Lint, Uint, P) denote a selection of P neuron indices for which the interval
[Lint[i], Uint[i]] is top-P largest. The synthesized assumption Ygssume for N is then the set
of inequalities:

Yassume = {Y; 2 Lint [2]7 sz S Uint [/L] 1€ SeleCt(Lintu Uinta P)} (8)
where Y; denotes the i-th output of .

Iterative Refinement. For each refinement round 7, and for each subnetwork A/; (1 = 1,..., K —1),

let the current overapproximate bound for its output be denoted by (LZ(»T), Ui(r)). Given an assumption
Yassume (constructed as above) and the formally verified lowerbounds (b extracted from the underlying
verifier, consider all neurons j selected for tightening. For each such 7 with assumption direction
(“>” or “<”) and associated right-hand side rhs, let [; be the corresponding lower bound from [b.
The refined bounds are updated by:

L+ lj] = rhs +1;, if direction is “>" [+ lj] = rhs —1;, if direction is “<” ©)

! Lgr) [7], otherwise ! U, i(r) [7], otherwise

All other coordinates are left unchanged. The updated tuple (LZ(-TH)7 UZ-(TH)) forms the new tightened
overapproximation for the next refinement round, and subsequent rounds proceed analogously unless
the verification succeeds or the allowed number of rounds is exhausted.

B.1 Chain of Proofs

Thm. 1] (Compositional Verification via Assume-Guarantee Reasoning) Given a neural network
N R" — R™ decomposed into K subnetworks such that N = N o --- o N1, a property
O = din = Pout, and intermediate predicates 1, . . . , Yk —1, Wwhere Yo = @i and Vg = Gout, the
global specification holds whenever every local property is valid:

K
(/\ <'Yk—1aNka’Yk>> = (Din, N, bout)

k=1

Proof. Let N = N g o N'k_1 0--- 0Ny denote the decomposition into K composed subnetworks.
Let the intermediate predicates be vg, 71, - . ., Yk With vg = ¢, and yx = Py We are given that
foreveryk=1,..., K,
VzeR™ 1y (2) = mWVi(2), or (31, Nk, %)
We show that:
Vr e R": d)m(z) - ¢out(N(I))v or <¢1’,n7Na ¢out>
Let z € R™ such that ¢;, (x) holds. That is, yo ().

* Base case (k = 1): By the first obligation, yo(z) = ~1(M1(x)), so 71(21) holds for
21 = Nl (l‘)

* Induction step: Assume for some 1 < k < K that y;_1(zx—1) holds for some zj_;. Then,
by the k-th obligation, v (N 'k (zx—1)) holds for zx = N (2zk—1).
By unrolling, starting from o (x), we obtain via repeated application:

Y(21), 12(22), -, 7x(2K), where 2z = Ni(2x-1), 20 =
In this case, zx = Nk (---Ni(z)) = N(z) and vk (2) means @oye (N ()).

Therefore, for any z satisfying ¢;,, (x), we have @, (N (x)). That is,

Vo : ¢in(r) = Pout(N(2))
Thus, the global specification holds. O

13

o N N7 S R SR

1

>

504

505
506
507

508
509

510
511
512
513
514
515

516
517
518
519

521
522
523
524

525

526
527
528

530
531

Alg. 2: Generate assumptions.

input :DNN N, input property i, overapproximation yover, number of neurons P, and scale factor F
output :Assumptions Yaossume

(Lovem Uover) < Yover
Lsample — Minimize(/\ﬂ 'an) // minimize output of A for samples from 7;,
Usample < Maximize(./\f, ’Y’LTL) // maximize output of AN for samples from A
Lint <+ Lsample —F- (Lsample — Lover) // interpolate output lower bounds of N
Uint < F - (Uover — Sample) + Usample // interpolate output upper bounds of A
Yassume < []
fori € Select(Lmh Uint7 P) do // select top-P neurons
'yassume.append((i, Llnt[l], 2)) // tighten assumption Y; > L;nt[i]
7assume.append((z',Uint[i], S)) // tighten assumption Y; < Uj;pn¢[i]

return Yossume

B.2 Soundness of Iterative Bound Refinement

[Thm. 2] (Soundness of Iterative Bound Refinement) Suppose the base verifier V soundly establishes,
Sor a neuron'Y;, a right-hand side rhs, a direction € {>, <}, and a corresponding verifier bound
0 (where § < 0 for “>” and § > 0 for “<”), that Y; — rhs < 0. Then, the refined inequality

Y; < (rhs+9)

is soundly verified. Therefore, updating the right-hand side to rhs + ¢ yields an assumption formally
verified by V.

Proof. Consider the case when the direction is “>". The assumption being verified takes the form
Y; > rhs (line 14). V soundly verifies that Y; — rhs > §, where 6 = li and 6 < 0. This implies
Y; > rhs + 6. Therefore, to ensure this assumption is valid, we update the right-hand side to rhs + ¢
(Tine T3)), confirming Y; > rhs + & holds. Similarly, a dual of this process is used to refine the upper
bounds. In both cases, replacing the original bound rhs with rhs + § yields an assumption that is
formally validated by the verifier. Thus, the refinement procedure produces sound bounds. O

This theorem formalizes the soundness of our bound refinement procedure, which is a critical
component of our iterative assumption generation. Specifically, it ensures that each refinement step,
guided by the verifier’s output, always results in bounds that are formally valid, thereby guaranteeing
that the iterative tightening of assumptions preserves correctness throughout the verification chain.

B.3 Soundness of CoVeNN

(Soundness of CoVeNN) Let N be a neural network and ¢;,, pous be input/output properties
such that CoVelNN verifies N satisfies ¢in = Gout. Assume all local subproblems are formally
verified by a sound underlying verifier V or formally refined as Then N indeed satisfies
¢in - (bout-

Proof. Follow the arguments in[§B.1} for any x with ¢, (z), we have

Pin(r) = NWN1(2)) = 2WN2N1(@)) = -+ = dou(N(2)).

Thus, N satisfies ¢;, = ¢ou:. The correctness of CoVeNN is thus relative to the soundness of
the underlying verifier: if the verifier establishes each local property, then the global specification
holds. O

The algorithm terminates because only finitely many refinement rounds are permitted for each ~;.
However, completeness is not guaranteed: the verifier may fail to establish some obligations or the
refinement limit may be reached, in which case CoVeNN may output unknown.

14

532

533

535
536
537
538
539

540
541
542
543
544
545
546

547
548
549
550
551
552
553
554

555
556
557
558
559
560
561

562

563
564
565
566
567
568
569

571
572

574
575
576
577

578
579
580
581

583
584

C Constructing Assumptions

We seek to automate the generation of assumptions for the second obligation in[Eq. 1] 7, by adapting
the verification of the first rule to approximate them. outlines a systematic method to estimate
and construct these assumptions. We use v to denote the values of intermediate steps in the process
of computing I — ~;,, is the assumption for N, and 7, ssume is the computed assumption for the
subsequent network. The underlying verifier is able to compute a sound overapproximation of a given
subnetwork’s output for 7;,,, which we denote with 7y, These bounds, (Lyyer; Uoper), are often
too imprecise to allow verification of the overall problem.

We construct tighter assumptions, g ssume» DY interpolating between the overapproximation and a
space defined by sampling the behavior of AV. [Fig. 2b]illustrates three distinct types of regions. The
solid red line represents the actual operational region of a hidden ReLLU within a DNN. Due to the
inherent non-linearity of DNNSs, calculating this exact region for hidden neurons is computationally
infeasible. Instead, verification processes commonly use sound overapproximations to capture the
behavior of each neuron, such as the triangular area bounded by (Loyer, Upver). However, this
introduces imprecision which can accumulate during verification of the layers of a DNN.

We compute a sampling region by minimizing (maximizing) the output of A/ for a set of sample inputs
from ~;,, (line 2Hline 3). This process uses backpropagation which requires that the minimization
and maximization be performed separately [36]]. These samples offer a tighter, more realistic
representation of the network output bounds by considering adversarial conditions. The sampled
region, (Lsqmpie; Usampie)s 18 likely to disprove subsequent verification sub-problems, since there
is a high probability of counterexamples existing close to these bounds Lggmpie and Usampie. To
mitigate this risk, we compute an interpolated region, (L;nz, U;nt), between the sampled region and
the overapproximation (line 4}fline 3)); the degree of interpolation can be controlled by F.

Rather than attempt to prove the full hypercube of an assumption, modern DNN verifiers [[19}(3 9, [10]
have been engineered to prove subsets of clauses of the DNF encoding of the negation of the
assumption — this is significantly faster in practice. We select the P neurons with the largest interval
size as determined by sampling to tighten (line 7). Selected constraints are then tightened by using
the upper/lower bounds from ;,,; (line 8}fline 9). Selective tightening allows us to mitigate the cost
of downstream verification, since after the initial verification pass, only assumptions for tightened
neurons need to be re-verified.

D Related Work

SoTA tools in DNN verification, such as those evaluated in VNN-COMP, integrating multiple
techniques to improve scalability and efficiency. Leading verifiers, including NeuralSAT [17}[10]
and a5-CROWN [19] [8], split problems into smaller subproblems and refine bounds on subprob-
lems. NeuralSAT and a3-CROWN leverage GPU-accelerated linear bound propagation alongside
advanced BaB techniques, such as cutting planes and neuron stabilizing, to handle harder networks.
Marabou [11] encodes verification as constraint problems and employs parallelized split-and-conquer
strategies to improve scalability. nnenum [12]] achieves impressive performance on low dimensional
networks using star sets and zonotope abstractions. CoVeNN can be viewed as a meta-verifier that
decompose large verification problems into smaller subproblems, and leverage these existing SoTA
verifiers to solve them.

There are two notable prior works addressing on compositional verification of DNNs. Ivanov et
al. [23] introduces a compositional framework to break a high-level task into subtasks or subcom-
ponents, such as breaking down car navigation task into track segment, each representing a distinct
system mode (e.g., going straight or turning). Unlike CoVeNN, which focuses on decomposing the
DNN itself, this work decomposes the task that may rely on DNNs.

Prophecy [22] uses an expensive decision tree algorithm to infer intermediate specifications. Their
approach (1) is exponentially with the number of neurons, (2) records only activation patterns for
ReL.Us at one single layer (layer pattern) which is selected by hand, (3) does not support iterative
refinements, and (4) and depends on training data. CoVeNN addresses these by inferring specifications
by recording computed bounds for neurons which (1) scales along with DNN verifier algorithms, (2)
records richer intermediate specifications that record ranges of activation values—which is essential
for handling non-ReLU activations and automatically infers decompositions, (3) allows intermediate

15

585
586
587

588

589

590
591
592
593
594
595

596
597
598
599
600
601

602
603
604
605

606
607
608
609

610
611
612
613

614

615
616
617
618
619
620
621
622

623

624

626

627
628

specifications to be refined based on the property being checked, and (4) does not require training
data. Lastly, Prophecy explicitly does not support Resnet and reports results on a few samples of
small networks (e.g., ACAS Xu) which are not representative of modern DNNs.

E More Details on Experiments

E.1 Experimental Setup, Solver Selection, and Benchmarks

Setup Our experiments are conducted on a desktop with an AMD Ryzen Threadripper PRO
5975WX 32-Core, 128 GB RAM, and an NVIDIA GeForce RTX 4090 GPU with 24 GB VRAM. Our
implementation is based on the open-source NeuralSAT veriﬁelﬂ with decomposition related code
added. For RQ1 and RQ2, NeuralSAT was used as the backend verifier, while both «3-CROWN and
NeuralSAT were used in RQ3. Timeout for a single instance is set as 3600 seconds. The maximum
number of rounds 7 is set to 4. Note that these parameters can be changed easily by CoVeNN’s user.

Underlying Solver Selection We tried several CPU-based verifiers, such as nnenum [12]] and
Marabou [[11]], but none of them could solve any instance of the benchmarks and their results would
be all “-” if added to[Tab. 2] In addition, we also tried running «3-CROWN and NeuralSAT on CPU
with instances that they got OOM errors and they all ended up being killed by the operating system
or took more than 30 minutes even for a single abstraction pass. This is not surprising as our work is
explicitly designed to solve problems that are beyond what can be solved by current NNV tools.

Benchmark Selection The VNN-COMP benchmark suite is a useful starting point, but prior
work [[13} 37]] notes that its benchmarks are often too easy for best verifiers. Our goal is to find
benchmarks that go beyond what can be solved. We approached this from two directions: (1) scaling
an existing VNN-COMP benchmark and (2) introducing a new challenging benchmark family.

Most VNN-COMP benchmarks lack a clear path for scaling, but the ResNet benchmark is an
exception: increasing the number of residual blocks aligns with real-world models like DroNet [38]]
and ResNet-152 [20]. We used this scaling strategy, adapting the training setup from Pytorch Image
Models (timm)]

To complement ResNet, we added a new benchmark family based on variational autoencoders (VAEs),
which are naturally decomposable at their latent bottleneck layer. We adapted the encoder/decoder
from Stable DifquiOIﬂ reduced its complexity for tool compatibility, and trained it on CIFAR10
using the simplified version of the original training code.

E.2 Model architectures

We summarize the model structures in our experiments in [Tab. 3l Let Conv(a, b, c) be a conven-
tional convolutional layer with a input channel, b output channels and a kernel size of ¢ x c. Let
ConvTran(a, b, ¢) be a transposed convolutional layer with a input channel, b output channels and
a kernel size of ¢ x c. The stride and padding sizes are intentionally omitted for simplicity. Let
Lin(a, b, c) be a fully-connected layer with a input features and b output features. Let ResBlock(a, b)
stands for a residual block that has a input channels and b output channels. A ResBlock is comprised
of 2 paths, where the main path contains 2 C'onv and the residual path contains 1 Conv. All networks
use ReLU activation only.

E.3 Ablation Study
E.3.1 Tools Scalability

Tools’ scalability of the two top performing verifiers in VNN-COMP’24, otf-CROWN and NeuralSAT,
and CoVeNN on ResNet-based instances is shown in Number of completed jobs for each
verifier is (verified, unknown) where “-” means that the verifier aborted with an OOM error on all
10 properties.

3https://github.com/dynaroars/neuralsat
*https://github.com/huggingface/pytorch-image-models
>https://github.com/explainingai-code/StableDiffusion- Py Torch

16

https://github.com/dynaroars/neuralsat
https://github.com/huggingface/pytorch-image-models
https://github.com/explainingai-code/StableDiffusion-PyTorch

629
630
631

632

633
634
635
636
637
638
639

640
641
642
643

644
645
646
647
648
649

650
651
652
653
654
655

656
657

Tab. 3: Model architectures used in our experiments.

Network Architecture Params
VAE BASE Encoder: Conv(3,8, 3), ResBlock(8,8), Conv(8,8,4), ResBlock(8,8), Conv(8,1,3), Conv(1,1,1) 10K
- Decoder: Conv(1,1,1), Conv(1,8,3), ResBlock(8,8), ConvTran(8,8,4), ResBlock(8,8), Conv(8, 3, 3)
VAE WIDE . Encoder: Conwv(3,16,3), ResBlock(16, 16), Conv(16, 16, 4), ResBlock(16, 16), Conv(16, 1, 3), Conv(1,1,1) 30K
- Decoder: Conv(1,1,1), Conv(1,16,3), ResBlock(16, 16), ConvTran(16,16,4), ResBlock(16,16), Conv(16, 3, 3)
VAE_DEEP Encoder: Conv(3,8,3), ResBlock(8,8), 2 x [Conv(& 8,4), ResBlock(8,8)|, Conv(8,1,3), Conv(1,1,1) 15K
Decoder: Conv(1,1,1), Conv(1,8,3), 2 x {ResBlock(S, 8), ConvTran(8,8,4)|, ResBlock(8,8), Conv(8, 3, 3)
RESNET6 Conv(3,16,3), ResBlock(16,32), 05 x ResBlock(32,32), Lin(32,10) 113K
RESNETI12 Conv(3,16,3), ResBlock(16,32), 11 x ResBlock(32,32), Lin(32,10) 230K
RESNETI18 Conv(3,16,3), ResBlock(16,32), 17 x ResBlock(32,32), Lin(32,10) 348K
RESNET36 Conv(3,16,3), ResBlock(16,32), 35 x ResBlock(32,32), Lin(32,10) 706K

Tab. 4: Number of completed jobs for each verifier (verified, unknown); “-”” means that the verifier aborted with
an OOM error on all 10 properties.

#Blocks «f-CROWN NeuralSAT CoVeNNys

3 (6,4) (6,4) (6,4)
6 (5.5) (5.5) (5,5)
9 (8.,2) O, 1) o, 1
12 - - (7,3)
18 - - 8,2)
36 - - 6,4)

As detailed in CoVeNN matches the ability of underlying verifiers on problems for which
they complete and the refinement strategies allow it to prove properties when scaling to much larger
networks.

E.3.2 CoVeNN Performance

In [KI_QI, CoVeNN has several tunable parameters, such as number of neurons P — number of
assumptions generated each round, scale factor F' — interpolating factor for generating assumptions
in[Alg. 2] and rounds r. We fixed the maximum number of rounds at = 4, underlying verifier
NeuralSAT, and we perform a parameter search with P € {64,128,256} and F' € {1/3,1/2}.
CoVeNN’s performances with different combinations of parameters are shown in [Fig. 5] CoVeNNgegre
simply terminates if CoVeNN fails to verify problems after initialization step and returns
unknown immediately.

The ablation plot in[Fig. 5|shows the number of problems solved for various configurations of CoveNN.
Each line represents a distinct setting of P (number of assumptions per round) and F' (interpolation
factor), as well as comparisons to baselines such as NeuralSAT, a5-CROWN, CoVeNNgesre, and
CoVeNN variants with different underlying verifiers.

The differences among CoVeNN performances clearly show that CoVeNN is especially sensitive to
P, which controls how many neurons are selected by CoVeNN for refinement in each round. In
particular, when P is small (e.g., 64), CoVeNN considers fewer neurons in each iteration, resulting
in fewer opportunities to tighten bounds. As a result, the refinement process yields only modest
improvements on the generated assumptions, thus, limiting the number of problems solved by CoVeNN
(83 problems).

On the other hand, with a larger P (e.g, 256), CoVeNN attempts to refine many more neurons in
one round, leading to increased computational cost (e.g., runtime) for its refinement. Theoretically,
this could lead to more assumptions being tightened, thus, yielding tighter approximations, the
larger number of verifying assumptions takes time, and often causing CoVeNN to be timed out before
proving properties. This is experimentally shown in the setting of { P = 256, F' = 1/3} (blue) and
{P =256, F = 1/2} (purple) lines, which solve fewer problems, 91 and 92, respectively.

The factor F is less sensitive to CoVeNN. The tiny differences between F' = 1/3 and F' = 1/2 (e.g.,
a single problem, for fixed P = 128) suggest that CoVeNN’s refinement is robust to changes in how

17

658
659
660

661
662
663

NeuralSAT
af3-CROWN
CoVeNNys
CoVeNNng
CoVeNNng
CoVeNNysg
CoVeNNng
CoVeNN,j

3000 P=64, F=1/3)
P=128, F=1/3
P=256, F=1/3

)
)
P=128, F=1/2)
)
)

N\

P=256, F=1/2

<)
S
S
S

P=128, F=1/3

CoVeNNgefime

Runtimes (s)
— 3
Z
S

n

|
|
1 b

0 10 20 30 10 50 60 70 80 %0 100

Fig. 5: Ablation study on different parameters of CoVeNN.

assumptions are interpolated. Eventhough CoVeNN might generate overly coarse assumptions and
that underlying verifier could not verify them, the iterative refinement[§3.3] could still effectively
achieve a sufficient precision.

CoVeNNgesre terminates immediately at the initialization step if the initial abstraction step fails

to verify problems (line 6). In contrast, the full-blown CoVeNN with tuned (P, F') parameters
demonstrates the best overall performance.

18

ss+ NeurIPS Paper Checklist

665

666
667

668

669
670

671

672
673

674
675
676

677
678

679
680

681

682

683

684

685

694

710
71

712

713
714

715

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our claims match our theoretical and empirical results — CoVeNN solved more
problems than SoOTA NNV tools across benchmarks.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations are explicitly mentioned in[§5]

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

19

716

717

718
719
720
721
722
723
724
725
726
727

728

729
730
731

732

733
734

735

737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752

754
755
756
757
758
759

761
762
763
764
765
766

767

769
770

Justification: The theorems and their proof sketches are listed in[§3.5]and detailed in[Apdx. B]
Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The model architectures and configurations used are provided in [§4]
and[Apdx.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

20

771

772
773

774

775

776
777

778
779
780
781

782
783
784

785
786

787
788
789

790
791

792
793
794

795
796
797

798

799

800

801

802
803

804
805
806

807
808

809

810
811

812

813
814
815
816
817
818
819
820
821
822

Answer: [Yes]

Justification: The data and code with instructions to reproduce the results have been uploaded
to an anonymized repo.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (https:
/Imips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Experimental details have been provided in
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Verification results are deterministic on the benchmarks, and no error bars
need to be provided.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

823
824

825
826
827

828

830
831
832

833

835
836

837

838

839

840

841
842

843
844

845
846
847

849
850

851

852

853

854

855
856

857
858
859

860
861

862

863

864

865

866
867

868
869
870
871

8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Detailed hardware resources are provided in[§4]and [Apdx. E]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have acknowledged the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: They have been discussed in[§3]
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

22

https://neurips.cc/public/EthicsGuidelines

872
873
874
875
876
877
878

880
881
882

883
884
885
886

887

888
889
890

891

892

893

894

895
896
897
898

899
900

901
902
903

904

905
906
907

908

910

911

912
913

914
915
916
917
918
919
920
921
922
923
924

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No data or models are released.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited both a;5-CROWN and NeuralSAT, and libraries used for experimental
evaluation.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets| has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

23

paperswithcode.com/datasets

925
926

927

928
929

930

931

932

933
934
935
936
937
938
939
940

941

942
943
944

945

946
947

948

949
950
951
952
953

954
955
956

957
958

959
960
961
962

963

964

965

966

967

968
969
970
971
972
973
974
975

13.

14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets are introduced in this paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper paper does not involve crowdsourcing nor research with human
subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

24

976 16. Declaration of LLLM usage

977 Question: Does the paper describe the usage of LLMs if it is an important, original, or
978 non-standard component of the core methods in this research? Note that if the LLM is used
979 only for writing, editing, or formatting purposes and does not impact the core methodology,
980 scientific rigorousness, or originality of the research, declaration is not required.

981 Answer: [NA]

982 Justification: LLM was only used for revising writing and suggesting words.

983 Guidelines:

984 * The answer NA means that the core method development in this research does not
985 involve LLMs as any important, original, or non-standard components.

986 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
987 should or should not be described.

25

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Compositional Verification of Neural Networks
	Decomposition
	Bound Approximations and Verification
	Iterative Refinement
	Example
	Formal Correctness

	Evaluation
	RQ1: Comparing to Non-Compositional SoTA Verifiers
	RQ2: On the Effectiveness of Assumption Refinement
	RQ3: Robustness to Underlying Verifiers

	Conclusion
	DNN Properties
	Correctness Proofs of CoVeNN
	Chain of Proofs
	Soundness of Iterative Bound Refinement
	Soundness of CoVeNN

	Constructing Assumptions
	Related Work
	More Details on Experiments
	Experimental Setup, Solver Selection, and Benchmarks
	Model architectures
	Ablation Study
	Tools Scalability
	CoVeNN Performance

