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Abstract

Verifying the behavior of neural networks is necessary if developers are to con-1

fidently deploy them as parts of mission-critical systems. Toward this end, re-2

searchers have been actively developing a range of increasingly sophisticated and3

scalable neural network verifiers. However, scaling verification to large networks4

is challenging, at least in part due to the significant memory requirements of verifi-5

cation algorithms. In this paper, we propose an assume-guarantee compositional6

framework, CoVeNN, that is parameterized by an underlying verifier to generate7

a sequence of verification sub-problems to address this challenge. We present8

an iterative refinement-based strategy for computing assumptions that allow sub-9

problems to retain sufficient accuracy. An evaluation using 7 neural networks10

and a total of 140 property specifications demonstrates that CoVeNN can verify11

nearly 7 times more problems than state-of-the-art verifiers. CoVeNN is available at:12

https://anonymous.4open.science/r/CoVeNN-8FD0.13

1 Introduction14

Machine learning (ML) techniques are advancing rapidly and have reached a level of performance15

across a range of challenging tasks, e.g., in the medical [1, 2] and autonomous driving [3, 4, 5]16

domains, that has led developers of critical systems to include ML models as components. To assure17

that such systems are fit for deployment, researchers have developed a variety of formal verification18

techniques to prove correctness properties of ML models, e.g., [6, 7, 8, 9, 10, 11, 12].19

Advances in neural network verification (NNV) have been dramatic since the landmark paper by20

Katz et al. [6] which verified properties of models comprised of 6 linear layers. VNN-COMP [13, 14,21

15, 16] has chronicled those advances by documenting the growth of benchmarks and verifiers. The22

largest benchmark in the competition, as measured by the number of layers, has grown from 6 to 21;23

where all but 2–3 of those layers are convolutional. Although these networks present are challenging24

for verifiers, they do not reflect the complexity of modern ML models.25

While the number of layers in a network is not the only factor that contributes to the difficulty of26

a verification problem, it is directly related to its exponential complexity [6]. For SoTA verifiers,27

like αβ-CROWN [8], NeuralSAT [17], and PyRAT [18], the worst-case involves each layer generating28

multiple states which each serve as the starting point for verification of the suffix of the network from29

that state forward. These verifiers perform a variety of optimizations to mitigate such state splitting,30

e.g., by tightening state encodings [19, 10], but complexity grows with the depth of the model.31

This complexity is manifest both in increased runtime and, perhaps more importantly, in memory uti-32

lization. SoTA NNV tools make use of GPUs to efficiently manipulate high-dimensional abstractions33

of model states and GPU memory is generally more limited than CPU memory—in our evaluation (§4)34

GPU VRAM is limited to 24 GB. If verification requires more GPU memory than is available, then35
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the verifier will abort with an out-of-memory (OOM) error. Fig. 1 shows the memory-consumption36

of the two top performing verifiers in VNN-COMP’24: αβ-CROWN and NeuralSAT, as they check37

10 randomly generated local robustness properties of ResNet models trained on CIFAR10, with an38

increasing number of residual blocks in each model. The x-axis corresponds to the number of blocks39

within the model (e.g., 16 corresponds to ResNet-50 [20]). The y-axis plots the maximum memory40

consumed, as a percentage of 24 GB, by the verifier across the 10 verification problems. A point in41

the plot is shown if the verifier returns normally on any problem, regardless of whether the result is42

verified or unknown. αβ-CROWN and NeuralSAT are able to verify all problems up to 9 blocks,43

but beyond that they exhaust memory. While GPU memory has grown slowly over time, the pace of44

that growth cannot be relied on for scaling to large neural network verification problems.45
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Fig. 1: Tools’ scalability on ResNet-based
instances. Maximum memory usage across
10 CIFAR10-based properties and ResNet-
based networks with increasing numbers of
blocks, comprised of 3 CNNs with ReLUs.

In this paper, we introduce a framework for Compositional46

Verification of Neural Networks (CoVeNN) that can be pa-47

rameterized by an underlying NNV tool, like αβ-CROWN48

and NeuralSAT. CoVeNN works by decomposing a neural49

network into subnetworks that are then verified indepen-50

dently. As depicted in Fig. 1, this allows CoVeNN to scale51

to larger networks than the underlying verifier.52

The key to CoVeNN is the ability to encode the verification53

of the subnetworks as a series of assume-guarantee rea-54

soning steps. After verifying each subnetwork, CoVeNN55

merges relevant verifier states, such as approximation56

bounds, into a compact summary that serves as the as-57

sumption for the next subnetwork. The corresponding58

guarantee ensures that, under this assumption, the subnet-59

work behaves correctly. Together, these assume-guarantee60

pairs are composed to establish the correctness of the full61

network.62

State merging is a classic approach for managing the cost of analysis and verification [21], but it63

risks introducing overapproximation that may prevent properties from being proven. To mitigate64

this, CoVeNN incorporates multiple refinement strategies that sharpen the precision of assumptions.65

As detailed in Tab. 4, CoVeNN matches the ability of underlying verifiers on problems for which66

they complete and the refinement strategies allow it to prove properties when scaling to much larger67

networks. CoVeNN does introduce overhead relative to the underlying verifier, but our evaluation (§4)68

on a set of challenging verification problems shows that substantial reduction in memory consumption69

translates to a significant increase in the ability to verify problems without an exorbitant time penalty.70

Related Work NNV is still a relatively young field, and few lines of work have explored composi-71

tional NN verification [22, 23]. However, no prior technique can handle the scale or complexity of72

networks like RESNET36. We discuss these work and others in more detail in Apdx. D.73

Contributions The primary contribution of this paper lies in the definition of a verifier-independent74

framework for compositional assume-guarantee verification of neural network properties. We imple-75

ment and evaluate CoVeNN’s ability to reduce verifier memory consumption and increase the number76

of properties proven (§4) and assess overall performance of CoVeNN relative to SoTA DNN verifiers77

on verification problems formulated over variants of neural network architectures.78

2 Background79

DNN Verification Verification of networks using piecewise-linear activation (e.g., ReLU) can be80

represented as a satisfiability problem [6, 11, 17, 10]. For an L-layer ReLU-based network N with81

Nl neurons in layer l, the formula:82

α ≡
∧

i∈[1,L]; j∈[1,Nl]

vi,j = max
( ∑

k∈[1,Nl]

(wi−1,j,k · vi−1,j) + bi,j , 0
)

defines the network. Given α and a property ϕ ≡ ϕin ⇒ ϕout a DNN verification problem is83

formulated by checking the satisfiability: α ∧ ϕin ∧ ¬ϕout. If it is unsatisfiable, then ϕ is a valid84

property of N . Otherwise, ϕ is not valid and a counterexample—a witness that ϕ is not valid—-is a85

satisfying assignment to the input variables in ϕin.86
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DNN Verifiers Modern DNN verifiers [18, 12, 11, 9, 10, 8] adopt techniques from abstract87

interpretation [24] for efficiency. Since most properties studied in previous work can be expressed as88

a Boolean expression over a linear equation of N ’s outputs, where ϕout can be merged as the last89

layer of N to produce an objective function f := ϕout ◦ N [19, 9], the final goal reduces to prove:90

∀x ∈ ϕin : f(x) ≥ 0. Solving minx∈ϕin
f(x) is challenging due to the non-linearity of DNNs.91

Modern DNN verifiers overapproximate nonlinear computations of N to efficiently estimate the92

lower bound of f(x), denoted as lb, i.e., ∀x ∈ ϕin : lb ≤ f(x), then providing lb ≥ 0 is sufficient to93

formally prove f(x) ≥ 0. This allows abstraction-based DNN verifiers to side-step the disjunctive94

splitting that is the performance bottleneck of constraint-based DNN verifiers.95

Compositional Verification For more than four decades researchers have been investigating96

compositional methods to scale verification of complex systems [25]. One widely used compositional97

approach, termed rely-guarantee or assume-guarantee reasoning, was introduced by Stark [26]. For a98

system M with a specification ϕ, the goal is to prove ϕin,M |= ϕout—we denote such a proof goal99

with the triple ⟨ϕin,M, ϕout⟩. Compositional reasoning divides a system into parts, {M1, . . . ,Mk},100

and formulates a set of local verification problems ⟨Ai,Mi, Gi⟩ such that the guarantees of one101

component implies the assumptions of another and ϕin and ϕout are the assumption of the first and102

guarantee of the final components, respectively.103

The promise of compositional methods is that they can reduce the complexity of verification by104

replacing reasoning about the product of the Mi with reasoning about their sum. However, realizing105

such a framework is non-trivial: it requires suitable rules to relate the guarantees of one component106

to the assumptions of another, careful selection of decomposition strategies to achieve cost-effective107

verification [27], and the identification of appropriate assumptions Ai [28]. CoVeNN addresses these108

challenges by exploiting the inherent sequential structure of neural architectures to define composi-109

tional proof rules tailored to layer-wise reasoning, adaptively selecting the degree of decomposition110

to maximize proof completion, and iteratively refining assumptions to support verification. Our111

approach builds on recent work in neural network verification by leveraging modern verifiers’ ability112

to compute tight overapproximations of intermediate outputs, which we then use as assumptions for113

verifying subsequent layers.114

3 Compositional Verification of Neural Networks115

Alg. 1 shows the CoVeNN algorithm, which takes as input the DNN N , the formulae ϕin ⇒ ϕout116

representing the property to be proven, the factor P indicating the number of generating assumptions,117

the scale factor F for constructing assumptions, and the number of iterative rounds r. CoVeNN returns118

unsat if ϕ is a valid property of N , and unknown otherwise.119

CoVeNN consists of three main phases: (i) decomposing the original network into subnetworks (line 1),120

(ii) computing a coarse overapproximation of intermediate assumptions (line 2–line 4), then checking121

the last subnetwork (line 5) , and (iii) refining the assumptions iteratively until the problem can be122

verified (line 12–line 18). The following sections describe each phase in detail.123

3.1 Decomposition124

CoVeNN starts by splitting the original network into K subnetworks (N 1, ...,NK) (line 1), where K125

is internally inferred by CoVeNN using the heuristics described below. This step reduces verification126

complexity by enabling the sequential verification of smaller, more manageable subnetworks.127

More formally, decomposition works as follows. A network, N , is defined by a computation graph,128

GN , whose nodes define computations, e.g., matrix multiplication, and whose edges describe data flow129

between computations. We restrict our attention to acyclic computation graphs, which are common130

in many classes of ML models. Our approach supports any decomposition into k subnetworks such131

that: N := N k ◦ N k−1 ◦ . . . ◦ N 1, and the input nodes of each N i define a cut of GN [29]. Given132

such a decomposition a simple proof rule for sequential composition can be defined:133

⟨A,N i, I⟩
⟨I,N i+1, G⟩

⟨A,N i+1 ◦ N i, G⟩
(1)
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Alg. 1: CoVeNN algorithm.
input :Verifier V , DNNN , property ϕin ⇒ ϕout, number of neurons P , scale factor F and rounds r
output :unsat if the property is valid and unknown otherwise

1 (N 1, ...,NK)← decomposeNetwork(N ) // automatically split N into K subnetworks
2 γover ← [ϕin]
3 for i ∈ [1, ...,K] do // initialize coarse overapproximation for each subnetwork
4 γover.append(overApproximate(N i, γover[i− 1]))

5 lb← V.check(γover[K], ϕout) // check last subnetwork overapproximation w.r.t. output property
6 if all(lb ≥ 0) then // check if last subnetwork is verified
7 return unsat // ⟨ϕin,N , ϕout⟩ is valid

8 while r > 0 do
9 for i ∈ [1, ...,K − 1] do // attempt to verify first K − 1 subnetworks

10 γassume ← generateAssumption(N i, γover[i− 1], γover[i], P, F ) // see (Apdx. C)
11 lb← V.verify(N i, γover[i− 1], γassume) // verify assumptions ⟨γin,N i, γassume⟩
12 (Lover, Uover)← γover[i] // extract bounds to refine (tighten)
13 for {(i, rhs, direction), li} ∈ zip(γassume, lb) do // refine assumption for each neuron i-th
14 if direction = “ ≥” then // assume Yi ≥ rhs, guarantee Yi − rhs ≥ li

15 Lover[i]← rhs+ li

16 else // assume Yi ≤ rhs, guarantee −Yi + rhs ≥ li

17 Uover[i]← rhs− li

18 γover[i]← (Lover, Uover) // update refined (tightened) bounds

19 lb← V.verify(NK , γover[K − 1], ϕout) // verify last subnetwork
20 if all(lb ≥ 0) then // check if last subnetwork is verified
21 return unsat // ⟨ϕin,N , ϕout⟩ is valid

22 r ← r − 1

23 return unknown

For a k-way decomposed network, the rule is applied k times with carefully chosen intermediate134

assumptions I , each serving as the guarantee of one step and the assumption of the next. If the first135

assumption is A = ϕin and the final guarantee is G = ϕout, then verifying all subnetworks implies136

that the original network satisfies ϕin ⇒ ϕout.137

Decomposing Heuristics A neural network can be decomposed into k subnetworks in various ways,138

and the success of compositional reasoning depends largely on how it is decomposed [27]. CoVeNN139

uses four heuristics to automatically guide this choice. We prioritize (1) cuts that define the inputs140

of layers in the network, because this leads to subnetworks that have input/output shapes that are141

well-supported by existing verifiers; (2) minimum cuts, because these reduce the dimensionality of142

the intermediate assumption, I; (3) cuts that are later in the network – a cut, c2, is later than cut, c1, if143

all vertices in c2 are dominated by some node in c1, because this reduces imprecision in computation144

of I; and (4) cuts that yield the largest subnetworks that are amenable to verification by existing145

verifiers, because this minimizes the number of subnetworks that need to be verified.146

3.2 Bound Approximations and Verification147

CoVeNN next performs an initial, coarse overapproximation for each subnetwork sequentially148

(line 2–line 4). This is done using an off-the-shelf verifier V—typically a modern BaB-based149

tool such as αβ-CROWN[8] or NeuralSAT[17]—which returns conservative output bounds based150

on the current property. CoVeNN leverages the computed bounds to verify properties and guide the151

iterative refinement discussed in §3.3.152

Once the overapproximations are computed, CoVeNN simply checks whether the approximation of153

the last subnetwork satisfies the output property (line 5). As described in §2, if V returns a lower154

bound lb ≥ 0 (line 6), the property is verified and CoVeNN concludes unsat. Otherwise, it proceeds155

with refinement to sharpen the result.156

Although only the last subnetwork is being verified (since it directly relates to the original output157

property), this verification depends on the approximations computed for the earlier K−1 subnetworks.158

These serve as assumptions in a chain of assume-guarantee obligations. Each intermediate bound acts159
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Fig. 2: (a) Example of a decomposed FC network with three hidden layers and (b) Regions of a hidden ReLU.

as both a guarantee for its originating subnetwork and an assumption for the next. We will discuss160

more about these assumptions and their refinement in the next section.161

3.3 Iterative Refinement162

In most cases, the initial approximation in §3.2 is too coarse to verify the property of interest. Thus,163

CoVeNN enters the refinement phase (line 9-line 18), which iteratively tightens the approximations until164

the problem can be verified (e.g., returns unsat) or CoVeNN exceeds the maximum predefined rounds165

r (e.g., returns unknown). CoVeNN’s refinement has three main steps: (1) generating assumptions, (2)166

verifying assumptions, (3) refining assumptions. The algorithm makes up to r iterations comprised of167

sequentially verifying each subnetwork.168

Generate Assumptions For each subnetwork N i, assumptions γassume are generated (line 10)169

based on its input conditions and pre-computed overapproximation following the procedure in Alg. 2.170

CoVeNN automates the generation of assumptions by systematically interpolating between coarse171

overapproximations and tight sample-driven bounds on subnetwork outputs, as detailed in Apdx. C.172

These assumptions reflect the possible output behavior of N i given the input property γin.173

Verify Assumptions CoVeNN attempts to verify γassume of the subnetwork N i, or174

⟨γin,N i, γassume⟩, using the verifier V (line 11). As described above, CoVeNN extracts the lower175

bound lb from the verifier to facilitate this task. If verify an assumption fails (i.e., lb < 0), γassume is176

invalid and CoVeNN refines them using verified lb (line 12-line 18).177

Refine Assumptions This refinement adjusts the assumptions to eliminate unverified regions,178

making them hold for the current preconditions and subnetwork. Refined assumptions then are179

propagated forward serving as input property for the next subnetwork.180

When an estimated assumption γassume (line 10) cannot be verified, we need to refine it so that it181

becomes valid. Particularly, line 12-line 18 outlines CoVeNN’s refinement method, which adjusts182

γassume using the formally verified lower bounds lb. CoVeNN first identifies the direction of the183

inequality to decide the appropriate refinement strategy. If the direction is “≥”, the assumption184

being verified is of the form Yi ≥ rhs (line 14). The verifier V has only formally confirmed that185

Yi − rhs ≥ li, where li < 0, meaning that Yi is greater than or equal to rhs adjusted by the lower186

bound li. Therefore, to make that assumption valid, the right-hand side value is loosened as rhs+ li187

(line 15). A dual of this process is used to refine the upper bounds.188

3.4 Example189

We illustrate CoVeNN by verifying that N , depicted in Fig. 2a, has the property:190

ϕ ≡ ϕin =⇒ ϕout ≡ (−2 ≤ x1 ≤ 2 ∧ −1 ≤ x2 ≤ 1) =⇒ (y1 > y2) (2)

When given the network N and the property ϕ, CoVeNN first attempts to prove N |= ϕ, denoted by191

the triple ⟨ϕin,N , ϕout⟩, using an underlying verifier V . Suppose V fails to verify the property due192

to memory exhaustion.193

CoVeNN now decomposes N into two subnetworks (line 1), N 1 and N 2, such that N = N 2 ◦ N 1194

as shown in Fig. 2a. Next, CoVeNN uses V to compute an output overapproximation for the K − 1195
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subnetworks from the input condition ϕin (line 3–line 4). We call the computed constraint an196

assumption and use γi to denote the assumption computed for network i. For this example, γ1 =197

−5 ≤ n21 ≤ 5 ∧ −10 ≤ n22 ≤ 10. Since this assumption initially is an overapproximation, a198

consequence of this is that V has produced proof of ⟨ϕin,N 1, γ1⟩ inherently.199

Once CoVeNN reaches the final subnetwork, it uses V to check the last overapproximation w.r.t. the200

output property (line 5), e.g., ϕout. If this succeeds then we have a proof that ⟨ϕin,N , ϕout⟩. In this201

case, this does not succeed, so CoVeNN attempts to refine the assumption (line 8-line 22).202

Refinement proceeds by sampling the behavior of N 1, subject to ϕin, and computes a hyperrectangle203

that tightly approximates sampled outputs; Fig. 2b depicts this sampled region in red. In the example,204

let this sampled assumption be σ1 = −2 ≤ n21 ≤ 2 ∧ −4 ≤ n22 ≤ 4. Since this is a tight205

approximation of the sampled behavior the likelihood that it is a valid postcondition of N 1 is low.206

We address this by interpolating between it and the overapproximating region to determine a new207

assumption (line 10), γ′
1 such that γ1 ⊇ γ′

1 ⊇ σ1. With hyperrectangular constraints one approach is208

to simply scale the sampled region,γ′
1 = s · (γ1 − σ1) + σ1, by some predefined factor, s ∈ [0, 1].209

Fig. 2b depicts an interpolated region in green with a scaling factor of 0.5. In our example, this new210

assumption is γ′
1 = −3 ≤ n21 ≤ 3 ∧ −5 ≤ n22 ≤ 5 and we use V to verify ⟨ϕin,N 1, γ

′
1⟩ (line 11).211

If this succeeds, then CoVeNN uses V to attempt to verify ⟨γ′
1,N 2, ϕout⟩ (line 19). If it fails we212

exploit the output bounds computed by V to generate a valid assumption (line 12–line 18): γ′′
1 =213

(−4 ≤ n21 ≤ 4 ∧ −7 ≤ n22 ≤ 7) and CoVeNN then seeks to verify ⟨γ′′
1 ,N 2, ϕout⟩ (line 19). In214

this example that verification succeeds, thereby completely the proof of ⟨ϕin,N , ϕout⟩ through a215

sequence of simpler verification problems.216

3.5 Formal Correctness217

The correctness of CoVeNN is based on the soundness of the assume-guarantee decomposition (§3.1)218

and the iterative refinement of the assumptions (§3.3). Note that we assume that the underlying219

verifier V is sound, i.e., its overapproximations are valid (§3.2). Below we provide the theorems and220

proof sketches for the soundness of CoVeNN, the full proofs are provided in Apdx. B.221

Compositional Verification The following states that the chain of assumptions and guarantees of222

subnetworks (§3.1) proves the original property ϕin ⇒ ϕout of the entire network N .223

Thm. 1 (Compositional Verification via Assume-Guarantee Reasoning). Given a neural network224

N : Rn → Rm decomposed into K subnetworks such that N = NK ◦ · · · ◦ N 1, a property225

ϕ ≡ ϕin ⇒ ϕout, and intermediate predicates γ1, . . . , γK−1, where γ0 = ϕin and γK = ϕout, the226

global specification holds whenever the every local property is valid:227 (
K∧

k=1

⟨γk−1,N k, γk⟩

)
=⇒ ⟨ϕin,N , ϕout⟩

Proof Sketch. For each pair of adjacent networks as shown in Eq. 1, assume-guarantee obligations are228

proved, establishing that each intermediate predicate γk is preserved under corresponding subnetwork229

N k. Composing these local guarantees forms a chain from the input property ϕin to the output230

property ϕout, showing that the global specification holds for the entire network.231

Refinement Process The following states that the refinement process (§3.3) states that each232

refinement step always results in bounds that are formally valid, thereby ensuring that the iterative233

tightening of assumptions preserves correctness throughout the verification chain.234

Thm. 2 (Soundness of Iterative Bound Refinement). Suppose the base verifier V soundly establishes,235

for a neuron Yi, a right-hand side rhs, a direction ≼∈ {≥,≤}, and a corresponding verifier bound236

δ (where δ < 0 for “≥” and δ > 0 for “≤”), that Yi − rhs ≼ δ. Then, the refined inequality237

Yi ≼ (rhs+ δ)

is verified. Therefore, updating the right-hand side to rhs+ δ yields a verified assumption by V .238

Proof Sketch. Given that the verifier soundly proves Yi − rhs ≼ δ, it follows that Yi ≼ (rhs+ δ)239

holds. Updating the bound accordingly yields a refined assumption that remains sound.240
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Tab. 1: Benchmark instances.

Benchmark Layers Neurons Parameters Instances (U/S/?)

VAE_BASE 20 43K 10K 20 / 0 / 0
VAE_WIDE 20 86K 39K 20 / 0 / 0
VAE_DEEP 28 44K 15K 7 / 0 / 13

RESNET6 20 283K 113K 11 / 0 / 9
RESNET12 38 627K 230K 9 / 0 / 11
RESNET18 56 700K 348K 18 / 0 / 2
RESNET36 110 1032K 706K 13 / 0 / 7

Total 98 / 0 / 42

Soundness of CoVeNN The following combines the previous two theorems to show that CoVeNN241

is sound: if all local subproblems generated during decomposition are either formally verified or242

refined, then the global property holds for the original network.243

Thm. 3 (Soundness of CoVeNN). Let N be a neural network and ϕin, ϕout be input/output properties244

such that CoVeNN verifies N satisfies ϕin =⇒ ϕout. CoVeNN applies Thm. 1 to decompose N and245

assume all local subproblems are formally verified by a sound underlying verifier V or formally246

refined as Thm. 2. Then N indeed satisfies ϕin =⇒ ϕout.247

Proof Sketch. CoVeNN decomposes the network into subnetworks and verifies a sequence of assume-248

guarantee obligations using a sound verifier. By composing these verified local implications, the249

global property ϕin ⇒ ϕout follows.250

4 Evaluation251

We evaluate the scalability and cost-effectiveness of CoVeNN based on three research questions on252

CoVeNN’s performance compared to state-of-the-art verifiers (RQ1) ; the effectiveness of refinement253

(§3.3) (RQ2); and CoVeNN’s robustness to variations in the underlying verifier (RQ3).254

Underlying Verifiers We experiment with two variants of CoVeNN, each configured with a different255

underlying verifier: NeuralSAT and αβ-CROWN. Both tools are state-of-the-art in DNN verification1,256

and allow us to extract the lower bound estimates needed for CoVeNN’s refinement process.257

Benchmarks We use two scalable families of benchmarks (Apdx. E). Tab. 1 provides details on the258

variants of the ResNet and VAE benchmarks used in our experiments. For each network, we generated259

20 robustness properties. For ResNets these are local robustness classification properties and for260

VAEs these are local reconstruction robustness properties (Apdx. A). Across the 140 combinations261

of networks and properties: 98 are known to be unsat (U), none of them are sat (S), and of the262

remaining 42 instances no verifier in our study was able to solve the problem (?). Note that robustness263

properties can vary significantly in complexity based on the centerpoint and ϵ, e.g., [30, Fig. 2].264

Setup Our experiments were run on a Linux machine with an AMD Ryzen Threadripper PRO265

5975WX 32-Core, 128 GB RAM, and an NVIDIA GeForce RTX 4090 GPU with 24 GB VRAM.266

Timeout for a single instance is set to 3600 seconds or the maximum number of rounds r is 4.267

Note that our results are deterministic and no random process is involved. We describe detailed268

configuration and model information for our experiments in Apdx. E.269

4.1 RQ1: Comparing to Non-Compositional SoTA Verifiers270

Tab. 2 presents the results of running both CoVeNN variants (CoVeNNNS and CoVeNNαβ), CoVeNN���Refine—271

a naïve version of CoVeNN without refinement using the NeuralSAT backend, and the standalone272

NeuralSAT and αβ-CROWN verifiers on the benchmarks. Column V shows the number of prob-273

lems verified with the percentage solved shown in column %. Column K shows the number of274

decompositions inferred by CoVeNN. Tools that run out of memory or time out on a benchmark are275

1See results in the VNN-COMP’24 report [15, Tab. 35]. PyRAT is commercial and has no available code.
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Tab. 2: Comparing CoVeNN to SoTA verifiers; most solved problems in bold.

Verifier VAE_BASE VAE_WIDE VAE_DEEP RESNET6 RESNET12 RESNET18 RESNET36 Overall
V % K V % K V % K V % K V % K V % K V % K V %

CoVeNNNS 20 100.0 1-2 19 95.0 2 5 25.0 2 11 55.0 1 9 45.0 2 18 90.0 2 13 65.0 3 95 67.9

CoVeNNαβ 4 20.0 2 - - - 6 30.0 2 10 50.0 1 9 45.0 2 17 85.0 2 13 65.0 3 59 42.1

CoVeNN���Refine 3 15.0 1 - - - - - - 11 55.0 1 9 45.0 2 9 45.0 2 13 65.0 3 45 32.1

NeuralSAT 3 15.0 1 - - - - - - 11 55.0 1 - - - - - - - - - 14 10.0

αβ-CROWN 1 5.0 1 - - - - - - 10 50.0 1 - - - - - - - - - 11 7.9
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Fig. 3: CoVeNN performance compared to SoTA verifiers.

indicated with a “-” (e.g., NeuralSAT cannot solve any instances of RESNET12 and VAE_DEEP,276

etc.). Across the benchmarks CoVeNN solves more than 6 times the number of problems than the277

best non-compositional solver. We note that neither NeuralSAT nor αβ-CROWN could solve any278

instances of VAE_WIDE, VAE_DEEP, RESNET12 and beyond, which demonstrates the ability of279

CoVeNN to scale verification beyond the state-of-the-art. RESNET36, which is comprised of 110280

convolutional layers, requires the most aggressive decomposition (K = 3), but even for such a large281

network CoVeNN is able to verify 65% of the properties. CoVeNN���Refine performs better than standalone282

verifiers, but falls short of any CoVeNN variants, demonstrating the importance of refinement (§4.2).283

Fig. 3a and Fig. 3b provide additional details on runtime and memory usage. Fig. 3a shows that284

regardless of the underlying solver or whether CoVeNN uses its refinement strategy (§3.3) it can285

solve many more problems than NeuralSAT and αβ-CROWN within the same time constraints. While286

NeuralSAT and αβ-CROWN reach their limits after solving 14 problems, CoVeNN solves as many287

as 95 instances. Fig. 3b shows that CoVeNN consumes significantly less memory2 than NeuralSAT288

and αβ-CROWN, which often encounter OOM errors. §E.3 reports on a more detailed parameter and289

ablation study of CoVeNN on these benchmarks.290

4.2 RQ2: On the Effectiveness of Assumption Refinement291

Fig. 3a shows that even without refinement, CoVeNN���Refine solves nearly 4 times as many problems292

as SoTA methods and that this rises to nearly 7 times with refinement enabled. To explore how293

refinement achieves this we recorded additional data on the refinement process. Fig. 4 reports,294

for each problem where K > 1, the percentage of neurons that were tightened in some round of295

refinement (red); the percentage by which the output ranges of those neurons were reduced (blue);296

and number of rounds of refinement performed (green - on the 2nd y-axis).297

For the VAE benchmarks, 17 of the BASE problems and all of the other problems involved refinement.298

There were more rounds of refinement and, except for the DEEP benchmark, this resulted in a high299

percentage of tightened neurons and significant output range reduction. For the DEEP benchmark,300

rounds of refinement continued until the timeout was reached on 15 of the 20 problems. For the301

RESNET benchmarks, we observe a very different profile. Fewer rounds of refinement were needed,302

2Measured by the internal function torch.cuda.mem_get_info in PyTorch.
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especially for RESNET18 which was able to prove 18 of the 20 problems. This is more than303

double the amount that could be proven with refinement disabled. The verification problems are304

randomly sampled across all benchmarks which leads to different performance profiles. The data305

for RESNET12 and RESNET36 demonstrate that for some problems the compositional nature of306

CoVeNN alone can lead to verification improvements (see the CoVeNN���Refine row in Tab. 2), but the307

additional effort of refinement does not yield further improvements.308

4.3 RQ3: Robustness to Underlying Verifiers309

Tab. 2 clearly indicates that CoVeNN significantly increase the number of solved problems regardless310

of the underlying verifier. While CoVeNNNS outperforms CoVeNNαβ , our analysis suggests that this is311

not a fundamental limitation of either CoVeNN or αβ-CROWN.312

We analyzed the performance of CoVeNNαβ on VAE_BASE and VAE_WIDE, the cases where there313

was a substantial performance gap. We found that αβ-CROWN does not support ConvTranspose314

layers in several of its heuristics for applying optimizations. This means that its performance in both315

verifying assumptions line 11 and verifying the final subnetwork line 19 suffer. We conjecture that316

better support for this layer type could ameliorate this issue, but we acknowledge that αβ-CROWN has317

numerous hyperparameters and we did not perform the type of expert tuning that the developers of318

αβ-CROWN apply when running benchmarks. The reduced performance on VAE benchmarks could319

be due to this as well.320

The RESNET benchmarks show a clearer trend. αβ-CROWN comes with hyperparameter settings321

for this architecture which we reuse, and we see very consistent degrees of improved scalability322

regardless of the underlying verifier.323

In summary, (RQ1) CoVeNN verifies over 6x more problems than SOTA verifiers and scales
to deeper networks with less memory, highlighting the effectiveness of decomposition. (RQ2)
Refinement significantly boosts performance: CoVeNN���Refine already outperforms SoTA by 4x, and
refinement raises this to nearly 7x. (RQ3) CoVeNN significantly improves verification regardless of
underlying solvers (performance gaps depend on the backends, not from CoVeNN itself).

324

5 Conclusion325

NNV has scaled tremendously in recent years, but networks continue to grow in complexity which326

limits the applicability of SoTA NNV techniques to real-world networks. Our work on CoVeNN is327

a first step in realizing the promise of compositional neural network verification, and preliminary328

results show that CoVeNN can scale significantly beyond SoTA verifiers.329

Limitations We plan a broader exploration of the impact of parameters of the framework and to330

develop adaptive strategies for selecting parameters, such as decomposing heuristics, the number331

of neurons P and interpolation factor F , for each sub-problem. More broadly, our framework does332

not currently use feedback from counterexamples, but we plan to explore how they can be used to333

identify the dimensions within an assumption that must be tightened to eliminate violations.334

Potential Negative Societal Impact The techniques developed in this work can reveal flaws in335

sensitive applications that may be exploited for malicious intent. However, these same methods also336

allow developers to identify such attacks and fix them prior to model deployment.337
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A DNN Properties439

For a neural network, N : Rn 7→ Rm, specifications of functional properties constrain the output of440

N based on its input. Specifying such necessary conditions for DNN input-output relations is a topic441

of great interest with applications as test oracles in DNN testing [31], training objectives to maximize442

network property conformance [32], and biasing generative models to produce outputs that conform443

to a property [33]. A broad class of properties can be formulated using pairs of half-space polytopes –444

each specified as the conjunction of cutting planes – where one set defines the pre-condition, ϕin,445

and another the post-condition, ϕout. A variety of different properties can be formulated using such446

pre-post condition pairs but we focus on two popular classes of properties below.447

Classification Robustness A well-studied class of properties express local robustness properties of448

the form:449

∀p ∈ [0, ϵ] : N (x) = N (x± p),

where x is a specific seed input, often chosen from the held out test dataset. These express that450

network inference is invariant for perturbations within the convex ϵ-ball, x± p, for the seed input.451

A variant of this, with a post-condition of the form ∥N (x) − N (x ± p)∥ ≤ β can be defined for452

regression networks.453

Reconstruction Robustness Generative models are formulated as neural networks, N : Rn 7→ Rn,
and are trained to approximate the identify function [34, 35]. For such, models one can adapt the
regression robustness property above, to define a local reconstruction robustness property of the form:

∀p ∈ [0, ϵ] : ∥N (x± p)− x∥∞ ≤ β,

for a seed input x. The β parameter expresses the expected agreement between an input and its454

reconstruction.455

B Correctness Proofs of CoVeNN456

Let N : Rn → Rm denote a neural network, and let ϕin(x) and ϕout(y) be input and output property457

of interest, respectively. The global verification objective is to prove:458

∀x ∈ Rn : ϕin(x) =⇒ ϕout(N (x)) (3)

Chain of Proofs. Given N , we decompose into K sequential subnetworks: N = NK ◦ NK−1 ◦459

· · · ◦ N 1, where each N k : Rdk−1 → Rdk , with d0 = n and dK = m.460

Let γ0 := ϕin and γK := ϕout; we seek to synthesize K − 1 intermediate predicates (assumptions)461

γ1, . . . , γK−1 over intermediate network states.462

Following the classical assume-guarantee (sequential composition) proof principle, the global property463

is entailed by the following chain of K local obligations:464

∀ k = 1, . . . ,K : ⟨γk−1,N k, γk⟩ (4)

If all these obligations hold, we have:465 (
K∧

k=1

⟨γk−1,N k, γk⟩

)
=⇒ ⟨ϕin,N , ϕout⟩ (5)

Thus global verification is reduced to a finite sequence of smaller verification problems.466

Automated Synthesis of Intermediate Assumptions. Given a subnetwork N k, input constraint467

γin, an overapproximate output bound γover = (Lover, Uover), number of neurons P , and scale468

factor F ∈ [0, 1], we synthesize the candidate assumption γassume as follows.469

First, CoVeNN computes the sampled output region by solving:470

Lsample = min
x∈γin

N k(x) Usample = max
x∈γin

N k(x) (6)
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where each minimization and maximization is performed through backpropagation.471

Next, CoVeNN interpolates between the overapproximate and sampled bounds to obtain:472

Lint = Lsample − F · (Lsample − Lover) Uint = F · (Uover − Usample) + Usample (7)

Let Select(Lint, Uint, P ) denote a selection of P neuron indices for which the interval473

[Lint[i], Uint[i]] is top-P largest. The synthesized assumption γassume for N k is then the set474

of inequalities:475

γassume =

{
Yi ≥ Lint[i], Yi ≤ Uint[i]

∣∣∣∣ i ∈ Select(Lint, Uint, P )

}
(8)

where Yi denotes the i-th output of N k.476

Iterative Refinement. For each refinement round r, and for each subnetwork N i (i = 1, . . . ,K−1),477

let the current overapproximate bound for its output be denoted by (L
(r)
i , U

(r)
i ). Given an assumption478

γassume (constructed as above) and the formally verified lowerbounds lb extracted from the underlying479

verifier, consider all neurons j selected for tightening. For each such j with assumption direction480

(“≥” or “≤”) and associated right-hand side rhs, let lj be the corresponding lower bound from lb.481

The refined bounds are updated by:482

L
(r+1)
i [j] =

{
rhs+ lj , if direction is “≥”
L
(r)
i [j], otherwise

U
(r+1)
i [j] =

{
rhs− lj , if direction is “≤”
U

(r)
i [j], otherwise

(9)

All other coordinates are left unchanged. The updated tuple (L(r+1)
i , U

(r+1)
i ) forms the new tightened483

overapproximation for the next refinement round, and subsequent rounds proceed analogously unless484

the verification succeeds or the allowed number of rounds is exhausted.485

B.1 Chain of Proofs486

Thm. 1 (Compositional Verification via Assume-Guarantee Reasoning) Given a neural network487

N : Rn → Rm decomposed into K subnetworks such that N = NK ◦ · · · ◦ N 1, a property488

ϕ ≡ ϕin ⇒ ϕout, and intermediate predicates γ1, . . . , γK−1, where γ0 = ϕin and γK = ϕout, the489

global specification holds whenever every local property is valid:490 (
K∧

k=1

⟨γk−1,N k, γk⟩

)
=⇒ ⟨ϕin,N , ϕout⟩

Proof. Let N = NK ◦ NK−1 ◦ · · · ◦ N 1 denote the decomposition into K composed subnetworks.491

Let the intermediate predicates be γ0, γ1, . . . , γK with γ0 = ϕin and γK = ϕout. We are given that492

for every k = 1, . . . ,K,493

∀z ∈ Rdk−1 : γk−1(z) =⇒ γk(N k(z)), or ⟨γk−1,N k, γk⟩
We show that:494

∀x ∈ Rn : ϕin(x) =⇒ ϕout(N (x)), or ⟨ϕin,N , ϕout⟩
Let x ∈ Rn such that ϕin(x) holds. That is, γ0(x).495

• Base case (k = 1): By the first obligation, γ0(x) =⇒ γ1(N 1(x)), so γ1(z1) holds for496

z1 = N 1(x).497

• Induction step: Assume for some 1 ≤ k < K that γk−1(zk−1) holds for some zk−1. Then,498

by the k-th obligation, γk(N k(zk−1)) holds for zk = N k(zk−1).499

By unrolling, starting from γ0(x), we obtain via repeated application:500

γ1(z1), γ2(z2), . . . , γK(zK), where zk = N k(zk−1), z0 = x

In this case, zK = NK(· · · N 1(x)) = N (x) and γK(zK) means ϕout(N (x)).501

Therefore, for any x satisfying ϕin(x), we have ϕout(N (x)). That is,502

∀x : ϕin(x) =⇒ ϕout(N (x))

Thus, the global specification holds.503
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Alg. 2: Generate assumptions.
input :DNNN , input property γin, overapproximation γover , number of neurons P , and scale factor F
output :Assumptions γassume

1 (Lover, Uover)← γover
2 Lsample ← Minimize(N , γin) // minimize output of N for samples from γin

3 Usample ← Maximize(N , γin) // maximize output of N for samples from γin

4 Lint ← Lsample − F · (Lsample − Lover) // interpolate output lower bounds of N
5 Uint ← F · (Uover − Usample) + Usample // interpolate output upper bounds of N
6 γassume ← [ ]
7 for i ∈ Select(Lint, Uint, P ) do // select top-P neurons
8 γassume.append((i, Lint[i],≥)) // tighten assumption Yi ≥ Lint[i]

9 γassume.append((i, Uint[i],≤)) // tighten assumption Yi ≤ Uint[i]

10 return γassume

B.2 Soundness of Iterative Bound Refinement504

Thm. 2 (Soundness of Iterative Bound Refinement) Suppose the base verifier V soundly establishes,505

for a neuron Yi, a right-hand side rhs, a direction ≼∈ {≥,≤}, and a corresponding verifier bound506

δ (where δ < 0 for “≥” and δ > 0 for “≤”), that Yi − rhs ≼ δ. Then, the refined inequality507

Yi ≼ (rhs+ δ)

is soundly verified. Therefore, updating the right-hand side to rhs+ δ yields an assumption formally508

verified by V .509

Proof. Consider the case when the direction is “≥”. The assumption being verified takes the form510

Yi ≥ rhs (line 14). V soundly verifies that Yi − rhs ≥ δ, where δ = li and δ < 0. This implies511

Yi ≥ rhs+ δ. Therefore, to ensure this assumption is valid, we update the right-hand side to rhs+ δ512

(line 15), confirming Yi ≥ rhs+ δ holds. Similarly, a dual of this process is used to refine the upper513

bounds. In both cases, replacing the original bound rhs with rhs+ δ yields an assumption that is514

formally validated by the verifier. Thus, the refinement procedure produces sound bounds.515

This theorem formalizes the soundness of our bound refinement procedure, which is a critical516

component of our iterative assumption generation. Specifically, it ensures that each refinement step,517

guided by the verifier’s output, always results in bounds that are formally valid, thereby guaranteeing518

that the iterative tightening of assumptions preserves correctness throughout the verification chain.519

B.3 Soundness of CoVeNN520

Thm. 3 (Soundness of CoVeNN) Let N be a neural network and ϕin, ϕout be input/output properties521

such that CoVeNN verifies N satisfies ϕin =⇒ ϕout. Assume all local subproblems are formally522

verified by a sound underlying verifier V or formally refined as Thm. 2. Then N indeed satisfies523

ϕin =⇒ ϕout.524

Proof. Follow the arguments in §B.1, for any x with ϕin(x), we have525

ϕin(x) =⇒ γ1(N 1(x)) =⇒ γ2(N 2(N 1(x))) =⇒ · · · =⇒ ϕout(N (x)).

Thus, N satisfies ϕin =⇒ ϕout. The correctness of CoVeNN is thus relative to the soundness of526

the underlying verifier: if the verifier establishes each local property, then the global specification527

holds.528

The algorithm terminates because only finitely many refinement rounds are permitted for each γi.529

However, completeness is not guaranteed: the verifier may fail to establish some obligations or the530

refinement limit may be reached, in which case CoVeNN may output unknown.531
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C Constructing Assumptions532

We seek to automate the generation of assumptions for the second obligation in Eq. 1, I , by adapting533

the verification of the first rule to approximate them. Alg. 2 outlines a systematic method to estimate534

and construct these assumptions. We use γ to denote the values of intermediate steps in the process535

of computing I – γin is the assumption for N , and γassume is the computed assumption for the536

subsequent network. The underlying verifier is able to compute a sound overapproximation of a given537

subnetwork’s output for γin, which we denote with γover. These bounds, (Lover, Uover), are often538

too imprecise to allow verification of the overall problem.539

We construct tighter assumptions, γassume, by interpolating between the overapproximation and a540

space defined by sampling the behavior of N . Fig. 2b illustrates three distinct types of regions. The541

solid red line represents the actual operational region of a hidden ReLU within a DNN. Due to the542

inherent non-linearity of DNNs, calculating this exact region for hidden neurons is computationally543

infeasible. Instead, verification processes commonly use sound overapproximations to capture the544

behavior of each neuron, such as the triangular area bounded by (Lover, Uover). However, this545

introduces imprecision which can accumulate during verification of the layers of a DNN.546

We compute a sampling region by minimizing (maximizing) the output of N for a set of sample inputs547

from γin (line 2-line 3). This process uses backpropagation which requires that the minimization548

and maximization be performed separately [36]. These samples offer a tighter, more realistic549

representation of the network output bounds by considering adversarial conditions. The sampled550

region, (Lsample, Usample), is likely to disprove subsequent verification sub-problems, since there551

is a high probability of counterexamples existing close to these bounds Lsample and Usample. To552

mitigate this risk, we compute an interpolated region, (Lint, Uint), between the sampled region and553

the overapproximation (line 4-line 5); the degree of interpolation can be controlled by F .554

Rather than attempt to prove the full hypercube of an assumption, modern DNN verifiers [19, 8, 9, 10]555

have been engineered to prove subsets of clauses of the DNF encoding of the negation of the556

assumption – this is significantly faster in practice. We select the P neurons with the largest interval557

size as determined by sampling to tighten (line 7). Selected constraints are then tightened by using558

the upper/lower bounds from γint (line 8-line 9). Selective tightening allows us to mitigate the cost559

of downstream verification, since after the initial verification pass, only assumptions for tightened560

neurons need to be re-verified.561

D Related Work562

SoTA tools in DNN verification, such as those evaluated in VNN-COMP, integrating multiple563

techniques to improve scalability and efficiency. Leading verifiers, including NeuralSAT [17, 10]564

and αβ-CROWN [19, 8], split problems into smaller subproblems and refine bounds on subprob-565

lems. NeuralSAT and αβ-CROWN leverage GPU-accelerated linear bound propagation alongside566

advanced BaB techniques, such as cutting planes and neuron stabilizing, to handle harder networks.567

Marabou [11] encodes verification as constraint problems and employs parallelized split-and-conquer568

strategies to improve scalability. nnenum [12] achieves impressive performance on low dimensional569

networks using star sets and zonotope abstractions. CoVeNN can be viewed as a meta-verifier that570

decompose large verification problems into smaller subproblems, and leverage these existing SoTA571

verifiers to solve them.572

There are two notable prior works addressing on compositional verification of DNNs. Ivanov et573

al. [23] introduces a compositional framework to break a high-level task into subtasks or subcom-574

ponents, such as breaking down car navigation task into track segment, each representing a distinct575

system mode (e.g., going straight or turning). Unlike CoVeNN, which focuses on decomposing the576

DNN itself, this work decomposes the task that may rely on DNNs.577

Prophecy [22] uses an expensive decision tree algorithm to infer intermediate specifications. Their578

approach (1) is exponentially with the number of neurons, (2) records only activation patterns for579

ReLUs at one single layer (layer pattern) which is selected by hand, (3) does not support iterative580

refinements, and (4) and depends on training data. CoVeNN addresses these by inferring specifications581

by recording computed bounds for neurons which (1) scales along with DNN verifier algorithms, (2)582

records richer intermediate specifications that record ranges of activation values–which is essential583

for handling non-ReLU activations and automatically infers decompositions, (3) allows intermediate584
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specifications to be refined based on the property being checked, and (4) does not require training585

data. Lastly, Prophecy explicitly does not support Resnet and reports results on a few samples of586

small networks (e.g., ACAS Xu) which are not representative of modern DNNs.587

E More Details on Experiments588

E.1 Experimental Setup, Solver Selection, and Benchmarks589

Setup Our experiments are conducted on a desktop with an AMD Ryzen Threadripper PRO590

5975WX 32-Core, 128 GB RAM, and an NVIDIA GeForce RTX 4090 GPU with 24 GB VRAM. Our591

implementation is based on the open-source NeuralSAT verifier3 with decomposition related code592

added. For RQ1 and RQ2, NeuralSAT was used as the backend verifier, while both αβ-CROWN and593

NeuralSAT were used in RQ3. Timeout for a single instance is set as 3600 seconds. The maximum594

number of rounds r is set to 4. Note that these parameters can be changed easily by CoVeNN’s user.595

Underlying Solver Selection We tried several CPU-based verifiers, such as nnenum [12] and596

Marabou [11], but none of them could solve any instance of the benchmarks and their results would597

be all “-” if added to Tab. 2. In addition, we also tried running αβ-CROWN and NeuralSAT on CPU598

with instances that they got OOM errors and they all ended up being killed by the operating system599

or took more than 30 minutes even for a single abstraction pass. This is not surprising as our work is600

explicitly designed to solve problems that are beyond what can be solved by current NNV tools.601

Benchmark Selection The VNN-COMP benchmark suite is a useful starting point, but prior602

work [13, 37] notes that its benchmarks are often too easy for best verifiers. Our goal is to find603

benchmarks that go beyond what can be solved. We approached this from two directions: (1) scaling604

an existing VNN-COMP benchmark and (2) introducing a new challenging benchmark family.605

Most VNN-COMP benchmarks lack a clear path for scaling, but the ResNet benchmark is an606

exception: increasing the number of residual blocks aligns with real-world models like DroNet [38]607

and ResNet-152 [20]. We used this scaling strategy, adapting the training setup from Pytorch Image608

Models (timm)4.609

To complement ResNet, we added a new benchmark family based on variational autoencoders (VAEs),610

which are naturally decomposable at their latent bottleneck layer. We adapted the encoder/decoder611

from Stable Diffusion5, reduced its complexity for tool compatibility, and trained it on CIFAR10612

using the simplified version of the original training code.613

E.2 Model architectures614

We summarize the model structures in our experiments in Tab. 3. Let Conv(a, b, c) be a conven-615

tional convolutional layer with a input channel, b output channels and a kernel size of c × c. Let616

ConvTran(a, b, c) be a transposed convolutional layer with a input channel, b output channels and617

a kernel size of c × c. The stride and padding sizes are intentionally omitted for simplicity. Let618

Lin(a, b, c) be a fully-connected layer with a input features and b output features. Let ResBlock(a, b)619

stands for a residual block that has a input channels and b output channels. A ResBlock is comprised620

of 2 paths, where the main path contains 2 Conv and the residual path contains 1 Conv. All networks621

use ReLU activation only.622

E.3 Ablation Study623

E.3.1 Tools Scalability624

Tools’ scalability of the two top performing verifiers in VNN-COMP’24, αβ-CROWN and NeuralSAT,625

and CoVeNN on ResNet-based instances is shown in Tab. 4. Number of completed jobs for each626

verifier is (verified, unknown) where “-” means that the verifier aborted with an OOM error on all627

10 properties.628

3https://github.com/dynaroars/neuralsat
4https://github.com/huggingface/pytorch-image-models
5https://github.com/explainingai-code/StableDiffusion-PyTorch
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Tab. 3: Model architectures used in our experiments.

Network Architecture Params

VAE_BASE Encoder: Conv(3, 8, 3), ResBlock(8, 8), Conv(8, 8, 4), ResBlock(8, 8), Conv(8, 1, 3), Conv(1, 1, 1) 10KDecoder: Conv(1, 1, 1), Conv(1, 8, 3), ResBlock(8, 8), ConvTran(8, 8, 4), ResBlock(8, 8), Conv(8, 3, 3)

VAE_WIDE Encoder: Conv(3, 16, 3), ResBlock(16, 16), Conv(16, 16, 4), ResBlock(16, 16), Conv(16, 1, 3), Conv(1, 1, 1) 39KDecoder: Conv(1, 1, 1), Conv(1, 16, 3), ResBlock(16, 16), ConvTran(16, 16, 4), ResBlock(16, 16), Conv(16, 3, 3)

VAE_DEEP Encoder: Conv(3, 8, 3), ResBlock(8, 8), 2×
[
Conv(8, 8, 4), ResBlock(8, 8)

]
, Conv(8, 1, 3), Conv(1, 1, 1) 15K

Decoder: Conv(1, 1, 1), Conv(1, 8, 3), 2×
[
ResBlock(8, 8), ConvTran(8, 8, 4)

]
, ResBlock(8, 8), Conv(8, 3, 3)

RESNET6 Conv(3, 16, 3), ResBlock(16, 32), 05×ResBlock(32, 32), Lin(32, 10) 113K
RESNET12 Conv(3, 16, 3), ResBlock(16, 32), 11×ResBlock(32, 32), Lin(32, 10) 230K
RESNET18 Conv(3, 16, 3), ResBlock(16, 32), 17×ResBlock(32, 32), Lin(32, 10) 348K
RESNET36 Conv(3, 16, 3), ResBlock(16, 32), 35×ResBlock(32, 32), Lin(32, 10) 706K

Tab. 4: Number of completed jobs for each verifier (verified, unknown); “-” means that the verifier aborted with
an OOM error on all 10 properties.

#Blocks αβ-CROWN NeuralSAT CoVeNNNS

3 (6, 4) (6, 4) (6, 4)
6 (5, 5) (5, 5) (5, 5)
9 (8, 2) (9, 1) (9, 1)

12 - - (7, 3)
18 - - (8, 2)
36 - - (6, 4)

As detailed in Tab. 4, CoVeNN matches the ability of underlying verifiers on problems for which629

they complete and the refinement strategies allow it to prove properties when scaling to much larger630

networks.631

E.3.2 CoVeNN Performance632

In Alg. 1, CoVeNN has several tunable parameters, such as number of neurons P – number of633

assumptions generated each round, scale factor F – interpolating factor for generating assumptions634

in Alg. 2, and rounds r. We fixed the maximum number of rounds at r = 4, underlying verifier635

NeuralSAT, and we perform a parameter search with P ∈ {64, 128, 256} and F ∈ {1/3, 1/2}.636

CoVeNN’s performances with different combinations of parameters are shown in Fig. 5. CoVeNN���Refine637

simply terminates if CoVeNN fails to verify problems after initialization step (line 6) and returns638

unknown immediately.639

The ablation plot in Fig. 5 shows the number of problems solved for various configurations of CoVeNN.640

Each line represents a distinct setting of P (number of assumptions per round) and F (interpolation641

factor), as well as comparisons to baselines such as NeuralSAT, αβ-CROWN, CoVeNN���Refine, and642

CoVeNN variants with different underlying verifiers.643

The differences among CoVeNN performances clearly show that CoVeNN is especially sensitive to644

P , which controls how many neurons are selected by CoVeNN for refinement in each round. In645

particular, when P is small (e.g., 64), CoVeNN considers fewer neurons in each iteration, resulting646

in fewer opportunities to tighten bounds. As a result, the refinement process yields only modest647

improvements on the generated assumptions, thus, limiting the number of problems solved by CoVeNN648

(83 problems).649

On the other hand, with a larger P (e.g, 256), CoVeNN attempts to refine many more neurons in650

one round, leading to increased computational cost (e.g., runtime) for its refinement. Theoretically,651

this could lead to more assumptions being tightened, thus, yielding tighter approximations, the652

larger number of verifying assumptions takes time, and often causing CoVeNN to be timed out before653

proving properties. This is experimentally shown in the setting of {P = 256, F = 1/3} (blue) and654

{P = 256, F = 1/2} (purple) lines, which solve fewer problems, 91 and 92, respectively.655

The factor F is less sensitive to CoVeNN. The tiny differences between F = 1/3 and F = 1/2 (e.g.,656

a single problem, for fixed P = 128) suggest that CoVeNN’s refinement is robust to changes in how657
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Fig. 5: Ablation study on different parameters of CoVeNN.

assumptions are interpolated. Eventhough CoVeNN might generate overly coarse assumptions and658

that underlying verifier could not verify them, the iterative refinement §3.3 could still effectively659

achieve a sufficient precision.660

CoVeNN���Refine terminates immediately at the initialization step if the initial abstraction step fails661

to verify problems (line 6). In contrast, the full-blown CoVeNN with tuned (P , F ) parameters662

demonstrates the best overall performance.663
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NeurIPS Paper Checklist664

1. Claims665

Question: Do the main claims made in the abstract and introduction accurately reflect the666

paper’s contributions and scope?667

Answer: [Yes]668

Justification: Our claims match our theoretical and empirical results — CoVeNN solved more669

problems than SoTA NNV tools across benchmarks.670

Guidelines:671

• The answer NA means that the abstract and introduction do not include the claims672

made in the paper.673

• The abstract and/or introduction should clearly state the claims made, including the674

contributions made in the paper and important assumptions and limitations. A No or675

NA answer to this question will not be perceived well by the reviewers.676

• The claims made should match theoretical and experimental results, and reflect how677

much the results can be expected to generalize to other settings.678

• It is fine to include aspirational goals as motivation as long as it is clear that these goals679

are not attained by the paper.680

2. Limitations681

Question: Does the paper discuss the limitations of the work performed by the authors?682

Answer: [Yes]683

Justification: The limitations are explicitly mentioned in §5.684

Guidelines:685

• The answer NA means that the paper has no limitation while the answer No means that686

the paper has limitations, but those are not discussed in the paper.687

• The authors are encouraged to create a separate "Limitations" section in their paper.688

• The paper should point out any strong assumptions and how robust the results are to689

violations of these assumptions (e.g., independence assumptions, noiseless settings,690

model well-specification, asymptotic approximations only holding locally). The authors691

should reflect on how these assumptions might be violated in practice and what the692

implications would be.693

• The authors should reflect on the scope of the claims made, e.g., if the approach was694

only tested on a few datasets or with a few runs. In general, empirical results often695

depend on implicit assumptions, which should be articulated.696

• The authors should reflect on the factors that influence the performance of the approach.697

For example, a facial recognition algorithm may perform poorly when image resolution698

is low or images are taken in low lighting. Or a speech-to-text system might not be699

used reliably to provide closed captions for online lectures because it fails to handle700

technical jargon.701

• The authors should discuss the computational efficiency of the proposed algorithms702

and how they scale with dataset size.703

• If applicable, the authors should discuss possible limitations of their approach to704

address problems of privacy and fairness.705

• While the authors might fear that complete honesty about limitations might be used by706

reviewers as grounds for rejection, a worse outcome might be that reviewers discover707

limitations that aren’t acknowledged in the paper. The authors should use their best708

judgment and recognize that individual actions in favor of transparency play an impor-709

tant role in developing norms that preserve the integrity of the community. Reviewers710

will be specifically instructed to not penalize honesty concerning limitations.711

3. Theory assumptions and proofs712

Question: For each theoretical result, does the paper provide the full set of assumptions and713

a complete (and correct) proof?714

Answer: [Yes]715
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Justification: The theorems and their proof sketches are listed in §3.5 and detailed in Apdx. B.716

Guidelines:717

• The answer NA means that the paper does not include theoretical results.718

• All the theorems, formulas, and proofs in the paper should be numbered and cross-719

referenced.720

• All assumptions should be clearly stated or referenced in the statement of any theorems.721

• The proofs can either appear in the main paper or the supplemental material, but if722

they appear in the supplemental material, the authors are encouraged to provide a short723

proof sketch to provide intuition.724

• Inversely, any informal proof provided in the core of the paper should be complemented725

by formal proofs provided in appendix or supplemental material.726

• Theorems and Lemmas that the proof relies upon should be properly referenced.727

4. Experimental result reproducibility728

Question: Does the paper fully disclose all the information needed to reproduce the main ex-729

perimental results of the paper to the extent that it affects the main claims and/or conclusions730

of the paper (regardless of whether the code and data are provided or not)?731

Answer: [Yes]732

Justification: The model architectures and configurations used are provided in §4733

and Apdx. E734

Guidelines:735

• The answer NA means that the paper does not include experiments.736

• If the paper includes experiments, a No answer to this question will not be perceived737

well by the reviewers: Making the paper reproducible is important, regardless of738

whether the code and data are provided or not.739

• If the contribution is a dataset and/or model, the authors should describe the steps taken740

to make their results reproducible or verifiable.741

• Depending on the contribution, reproducibility can be accomplished in various ways.742

For example, if the contribution is a novel architecture, describing the architecture fully743

might suffice, or if the contribution is a specific model and empirical evaluation, it may744

be necessary to either make it possible for others to replicate the model with the same745

dataset, or provide access to the model. In general. releasing code and data is often746

one good way to accomplish this, but reproducibility can also be provided via detailed747

instructions for how to replicate the results, access to a hosted model (e.g., in the case748

of a large language model), releasing of a model checkpoint, or other means that are749

appropriate to the research performed.750

• While NeurIPS does not require releasing code, the conference does require all submis-751

sions to provide some reasonable avenue for reproducibility, which may depend on the752

nature of the contribution. For example753

(a) If the contribution is primarily a new algorithm, the paper should make it clear how754

to reproduce that algorithm.755

(b) If the contribution is primarily a new model architecture, the paper should describe756

the architecture clearly and fully.757

(c) If the contribution is a new model (e.g., a large language model), then there should758

either be a way to access this model for reproducing the results or a way to reproduce759

the model (e.g., with an open-source dataset or instructions for how to construct760

the dataset).761

(d) We recognize that reproducibility may be tricky in some cases, in which case762

authors are welcome to describe the particular way they provide for reproducibility.763

In the case of closed-source models, it may be that access to the model is limited in764

some way (e.g., to registered users), but it should be possible for other researchers765

to have some path to reproducing or verifying the results.766

5. Open access to data and code767

Question: Does the paper provide open access to the data and code, with sufficient instruc-768

tions to faithfully reproduce the main experimental results, as described in supplemental769

material?770
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Answer: [Yes]771

Justification: The data and code with instructions to reproduce the results have been uploaded772

to an anonymized repo.773

Guidelines:774

• The answer NA means that paper does not include experiments requiring code.775

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/776

guides/CodeSubmissionPolicy) for more details.777

• While we encourage the release of code and data, we understand that this might not be778

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not779

including code, unless this is central to the contribution (e.g., for a new open-source780

benchmark).781

• The instructions should contain the exact command and environment needed to run782

to reproduce the results. See the NeurIPS code and data submission guidelines (https:783

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.784

• The authors should provide instructions on data access and preparation, including how785

to access the raw data, preprocessed data, intermediate data, and generated data, etc.786

• The authors should provide scripts to reproduce all experimental results for the new787

proposed method and baselines. If only a subset of experiments are reproducible, they788

should state which ones are omitted from the script and why.789

• At submission time, to preserve anonymity, the authors should release anonymized790

versions (if applicable).791

• Providing as much information as possible in supplemental material (appended to the792

paper) is recommended, but including URLs to data and code is permitted.793

6. Experimental setting/details794

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-795

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the796

results?797

Answer: [Yes]798

Justification: Experimental details have been provided in Apdx. E.799

Guidelines:800

• The answer NA means that the paper does not include experiments.801

• The experimental setting should be presented in the core of the paper to a level of detail802

that is necessary to appreciate the results and make sense of them.803

• The full details can be provided either with the code, in appendix, or as supplemental804

material.805

7. Experiment statistical significance806

Question: Does the paper report error bars suitably and correctly defined or other appropriate807

information about the statistical significance of the experiments?808

Answer: [NA]809

Justification: Verification results are deterministic on the benchmarks, and no error bars810

need to be provided.811

Guidelines:812

• The answer NA means that the paper does not include experiments.813

• The authors should answer "Yes" if the results are accompanied by error bars, confi-814

dence intervals, or statistical significance tests, at least for the experiments that support815

the main claims of the paper.816

• The factors of variability that the error bars are capturing should be clearly stated (for817

example, train/test split, initialization, random drawing of some parameter, or overall818

run with given experimental conditions).819

• The method for calculating the error bars should be explained (closed form formula,820

call to a library function, bootstrap, etc.)821

• The assumptions made should be given (e.g., Normally distributed errors).822
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• It should be clear whether the error bar is the standard deviation or the standard error823

of the mean.824

• It is OK to report 1-sigma error bars, but one should state it. The authors should825

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis826

of Normality of errors is not verified.827

• For asymmetric distributions, the authors should be careful not to show in tables or828

figures symmetric error bars that would yield results that are out of range (e.g. negative829

error rates).830

• If error bars are reported in tables or plots, The authors should explain in the text how831

they were calculated and reference the corresponding figures or tables in the text.832

8. Experiments compute resources833

Question: For each experiment, does the paper provide sufficient information on the com-834

puter resources (type of compute workers, memory, time of execution) needed to reproduce835

the experiments?836

Answer: [Yes]837

Justification: Detailed hardware resources are provided in §4 and Apdx. E.838

Guidelines:839

• The answer NA means that the paper does not include experiments.840

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,841

or cloud provider, including relevant memory and storage.842

• The paper should provide the amount of compute required for each of the individual843

experimental runs as well as estimate the total compute.844

• The paper should disclose whether the full research project required more compute845

than the experiments reported in the paper (e.g., preliminary or failed experiments that846

didn’t make it into the paper).847

9. Code of ethics848

Question: Does the research conducted in the paper conform, in every respect, with the849

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?850

Answer: [Yes]851

Justification: We have acknowledged the NeurIPS Code of Ethics.852

Guidelines:853

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.854

• If the authors answer No, they should explain the special circumstances that require a855

deviation from the Code of Ethics.856

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-857

eration due to laws or regulations in their jurisdiction).858

10. Broader impacts859

Question: Does the paper discuss both potential positive societal impacts and negative860

societal impacts of the work performed?861

Answer: [Yes]862

Justification: They have been discussed in §5.863

Guidelines:864

• The answer NA means that there is no societal impact of the work performed.865

• If the authors answer NA or No, they should explain why their work has no societal866

impact or why the paper does not address societal impact.867

• Examples of negative societal impacts include potential malicious or unintended uses868

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations869

(e.g., deployment of technologies that could make decisions that unfairly impact specific870

groups), privacy considerations, and security considerations.871
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• The conference expects that many papers will be foundational research and not tied872

to particular applications, let alone deployments. However, if there is a direct path to873

any negative applications, the authors should point it out. For example, it is legitimate874

to point out that an improvement in the quality of generative models could be used to875

generate deepfakes for disinformation. On the other hand, it is not needed to point out876

that a generic algorithm for optimizing neural networks could enable people to train877

models that generate Deepfakes faster.878

• The authors should consider possible harms that could arise when the technology is879

being used as intended and functioning correctly, harms that could arise when the880

technology is being used as intended but gives incorrect results, and harms following881

from (intentional or unintentional) misuse of the technology.882

• If there are negative societal impacts, the authors could also discuss possible mitigation883

strategies (e.g., gated release of models, providing defenses in addition to attacks,884

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from885

feedback over time, improving the efficiency and accessibility of ML).886

11. Safeguards887

Question: Does the paper describe safeguards that have been put in place for responsible888

release of data or models that have a high risk for misuse (e.g., pretrained language models,889

image generators, or scraped datasets)?890

Answer: [NA]891

Justification: No data or models are released.892

Guidelines:893

• The answer NA means that the paper poses no such risks.894

• Released models that have a high risk for misuse or dual-use should be released with895

necessary safeguards to allow for controlled use of the model, for example by requiring896

that users adhere to usage guidelines or restrictions to access the model or implementing897

safety filters.898

• Datasets that have been scraped from the Internet could pose safety risks. The authors899

should describe how they avoided releasing unsafe images.900

• We recognize that providing effective safeguards is challenging, and many papers do901

not require this, but we encourage authors to take this into account and make a best902

faith effort.903

12. Licenses for existing assets904

Question: Are the creators or original owners of assets (e.g., code, data, models), used in905

the paper, properly credited and are the license and terms of use explicitly mentioned and906

properly respected?907

Answer: [Yes]908

Justification: We cited both αβ-CROWN and NeuralSAT, and libraries used for experimental909

evaluation.910

Guidelines:911

• The answer NA means that the paper does not use existing assets.912

• The authors should cite the original paper that produced the code package or dataset.913

• The authors should state which version of the asset is used and, if possible, include a914

URL.915

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.916

• For scraped data from a particular source (e.g., website), the copyright and terms of917

service of that source should be provided.918

• If assets are released, the license, copyright information, and terms of use in the package919

should be provided. For popular datasets, paperswithcode.com/datasets has curated920

licenses for some datasets. Their licensing guide can help determine the license of a921

dataset.922

• For existing datasets that are re-packaged, both the original license and the license of923

the derived asset (if it has changed) should be provided.924
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• If this information is not available online, the authors are encouraged to reach out to925

the asset’s creators.926

13. New assets927

Question: Are new assets introduced in the paper well documented and is the documentation928

provided alongside the assets?929

Answer: [NA]930

Justification: No new assets are introduced in this paper.931

Guidelines:932

• The answer NA means that the paper does not release new assets.933

• Researchers should communicate the details of the dataset/code/model as part of their934

submissions via structured templates. This includes details about training, license,935

limitations, etc.936

• The paper should discuss whether and how consent was obtained from people whose937

asset is used.938

• At submission time, remember to anonymize your assets (if applicable). You can either939

create an anonymized URL or include an anonymized zip file.940

14. Crowdsourcing and research with human subjects941

Question: For crowdsourcing experiments and research with human subjects, does the paper942

include the full text of instructions given to participants and screenshots, if applicable, as943

well as details about compensation (if any)?944

Answer: [NA]945

Justification: The paper paper does not involve crowdsourcing nor research with human946

subjects.947

Guidelines:948

• The answer NA means that the paper does not involve crowdsourcing nor research with949

human subjects.950

• Including this information in the supplemental material is fine, but if the main contribu-951

tion of the paper involves human subjects, then as much detail as possible should be952

included in the main paper.953

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,954

or other labor should be paid at least the minimum wage in the country of the data955

collector.956

15. Institutional review board (IRB) approvals or equivalent for research with human957

subjects958

Question: Does the paper describe potential risks incurred by study participants, whether959

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)960

approvals (or an equivalent approval/review based on the requirements of your country or961

institution) were obtained?962

Answer: [NA]963

Justification: The paper does not involve crowdsourcing nor research with human subjects.964

Guidelines:965

• The answer NA means that the paper does not involve crowdsourcing nor research with966

human subjects.967

• Depending on the country in which research is conducted, IRB approval (or equivalent)968

may be required for any human subjects research. If you obtained IRB approval, you969

should clearly state this in the paper.970

• We recognize that the procedures for this may vary significantly between institutions971

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the972

guidelines for their institution.973

• For initial submissions, do not include any information that would break anonymity (if974

applicable), such as the institution conducting the review.975
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16. Declaration of LLM usage976

Question: Does the paper describe the usage of LLMs if it is an important, original, or977

non-standard component of the core methods in this research? Note that if the LLM is used978

only for writing, editing, or formatting purposes and does not impact the core methodology,979

scientific rigorousness, or originality of the research, declaration is not required.980

Answer: [NA]981

Justification: LLM was only used for revising writing and suggesting words.982

Guidelines:983

• The answer NA means that the core method development in this research does not984

involve LLMs as any important, original, or non-standard components.985

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what986

should or should not be described.987
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