
Generating and Checking DNN Verification Proofs

Anonymous Author(s)
Affiliation
Address
email

Abstract

Deep Neural Networks (DNN) have emerged as an effective approach to implement-1

ing challenging sub-problems. They are increasingly being used as components in2

critical transportation, medical, and military systems. However, like human-written3

software, DNNs may have flaws that can lead to unsafe system performance. To4

confidently deploy DNNs in such systems, strong evidence is needed that they5

do not contain such flaws. This has led researchers to explore the adaptation6

and customization of software verification approaches to the problem of neural7

network verification (NNV). Many dozens of NNV tools have been developed8

in recent years and as a field these techniques have matured to the point where9

realistic networks can be analyzed to detect flaws and to prove conformance with10

specifications. NNV tools are highly-engineered and complex may harbor flaws11

that cause them to produce unsound results.12

We identify commonalities in the algorithmic approaches taken by NNV tools to13

define a verifier independent proof format – activation pattern tree proofs (APTP)14

– and design an algorithm for checking those proofs that is proven correct and15

optimized to enable scalable checking. We demonstrate that existing verifiers16

can efficiently generate APTP proofs, and that an APTPchecker significantly17

outperforms prior work on a benchmark of 16 neural networks and 400 NNV18

problems, and that it is robust to variation in APTP proof structure arising from19

different NNV tools. APTPchecker is available at: https://anonymous.4open.20

science/r/APTPchecker-0482/.21

1 Introduction22

As deep neural networks (DNNs) become integral components of critical systems such as autonomous23

vehicles [1], medical decision-making [2], and robotics [3], it is imperative to rigorously verify their24

behavior. In recent years, the research community has developed a wide-range of algorithmic25

techniques to verify DNN properties and incorporated them into tools that now scale to realistic26

DNN models millions of neurons [4]. These advances have enabled verification of properties such as27

robustness to input perturbations and conformance to safety specifications [4, 5, 6, 7].28

However, despite the progress in algorithmic advances, a fundamental question remains: “How can we29

trust the results produced by DNN verification tools?” Recent competitions such as VNN-COMP [4]30

have revealed correctness issues in multiple tools, including cases where a verifier incorrectly declared31

a property to be proven even when a counterexample exists. These errors are difficult to detect and32

debug due to the complexity of verifier implementations, which often exceed tens of thousands of33

lines of code and employ intricate optimization techniques, e.g., top of the line DNN verification34

tools such as αβ-CROWN [7] and NeuralSAT [8] have 20k SLOC implementations with complex35

algorithms that may harbor bugs. Without a mechanism to independently validate verification results,36

correctness of DNN verification tools cannot be assured and therefore posing a serious obstacle to37

deploying DNNs in safety-critical domains.38

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

https://anonymous.4open.science/r/APTPchecker-0482/
https://anonymous.4open.science/r/APTPchecker-0482/
https://anonymous.4open.science/r/APTPchecker-0482/

To address this, we propose proof-producing DNN verification: an approach in which verifiers emit a39

formal proof object that encodes the reasoning steps behind the verification result, and a separate,40

minimal proof checker certifies the proof’s validity. This paradigm, long established in classical logic41

and SAT solving [9, 10, 11], brings transparency, auditability, and trust to the verification process.42

More specifically, we analyze the broad class of “branch and bound” (BaB) DNN verification43

algorithms and reveal that they share two commonalities: (1) they refine the abstractions they use by44

performing case splitting to reason about the different phases of neuron activation, and (2) within45

cases they perform reasoning steps that can be formulated within the broad class of mixed integer46

linear programming (MILP) problems. Based on these insights, we show that BaB DNN verification47

naturally emit activation pattern tree proofs (APTP), which are a compact representation of the48

reasoning steps performed by the verifier (§3.1) . We also define a verifier independent APTP format49

that can be efficiently generated on-the-fly during DNN verification (§3.2). Finally, we present the50

APTPchecker algorithm along with a suite of optimizations to check APTP proofs (§4).51

In addition to these foundational results, other contributions include: (1) extending two state-of-the-art52

DNN verifiers to efficiently emit APTP proofs; (2) implementing the small-footprint APTPchecker53

tool (800 SLOC); (3) evaluating the performance of APTPchecker on a benchmark of 400 verification54

problems involving 16 neural networks ranging up to several thousands of neurons and millions of55

parameters; (4) demonstrating that APTPchecker significantly outperforms previous DNN proof56

checking approaches; and (5) demonstrating that APTP and APTPchecker are robust to variation in57

the structure of proofs arising from different DNN verification algorithms.58

2 Background59

Deep Neural Network. A neural network [12] consists of an input layer, multiple hidden layers, and60

an output layer. The output of a DNN is obtained by progressively computing the values of neurons61

in each layer. More specifically, the value of a hidden neuron y is ReLU(
∑n

i wivi + b), where b is62

the bias, ws are the weights of y, vs are the neurons of preceding layer,
∑n

i wivi + b is the affine63

transformation, and ReLU(x) = max(x, 0) is the activation function. The Rectified Linear Unit64

(ReLU) is a representative of a broad class of piece-wise linear activation functions that could be65

supported by our approach. A ReLU neuron is said to be active if its input value is greater than zero66

and inactive otherwise.67

DNN Verification. Given a DNN N and a property ϕ, the DNN verification problem asks if ϕ is68

a valid property of N . In modern DNN verification, ϕ(x, y) := ϕin(x) ⇒ ϕout(y), where ϕin is a69

property over the inputs and ϕout is a property over the outputs of N . This form of properties has70

been used to encode safety and security requirements of DNNs [13, 14].71

DNN verification then can be formulated as checking the satisfiability of:72

α ∧ ϕin ∧ ¬ϕout (1)
where α is the encoding of N . A DNN verifier attempts to find a counterexample input to N that73

satisfies ϕin but violates ϕout. If Eq. 1 is unsatisfiable (e.g., no such counterexample exists), ϕ is a74

valid property of N and invalid otherwise.75

For the widely-used ReLU activation problem, this problem becomes a search for activation patterns,76

i.e., boolean assignments representing activation status of neurons, that lead to satisfaction the formula77

in Eq. 1. Modern DNN verification techniques [7, 6, 8, 15, 16] all adopt this idea and search for78

satisfying assignments.79

Related Work (more details in Apdx. D) Proof checking is a well-established area in constraint80

solving, particularly in SAT/SMT solving, with significant work on clausal proof generation and81

verification, such as DRAT for SAT solvers and various proof checkers like DRAT-trim and LRAT [9,82

17, 11]. SMT solvers, such as Z3 and veriT, also produce proofs that can be reconstructed in proof83

assistants, and other solvers like MathSAT5, SMTInterpol, and CVC5 have similar capabilities [18,84

19, 20, 21, 22]. However, DNN verification is a newer field, with limited research on proof checkers.85

The only existing proof checking work for DNNs focuses on Marabou, using Farkas’s lemma and86

implemented in the Imandra framework [23, 24, 25]. In contrast, we introduces a more expressive87

proof format, APTP, and stronger proof checker, APTPchecker, specifically designed for neuron-88

splitting DNN verification, and significantly advancing previous methods.89

2

Alg. 1. The BaBNV algorithm with proof generation.
input :DNNN , property ϕin ⇒ ϕout

output :(unsat, proof) if property is valid, otherwise (sat, cex)

1 ActPatterns← {∅} // initialize verification problems
2 proof← { } // initialize proof tree
3 while ActPatterns do // main loop
4 σi ← Select(ActPatterns) // process problem i-th
5 if Deduce(N , ϕin, ϕout, σi) then
6 (cex, vi)← Decide(N , ϕin, ϕout, σi)
7 if cex then return (sat, cex) // found a valid counter-example
8 ActPatterns← ActPatterns ∪ {σi ∧ vi ; σi ∧ vi} // new activation patterns

9 else // detect a conflict
10 proof← proof ∪ {σi} // build proof tree

11 return (unsat, proof)

(a) A simple DNN.

1

2

4

3

5

6 7

(b) A proof tree.

Fig. 1: Example of verifying (x1, x2) ∈ [−2.0, 2.0]× [−1.0, 1, 0]⇒ (y1 > y2).

3 Proof Generation for DNN Verification90

All of the major DNN verification approaches including: αβ-CROWN [7], NeuralSAT [15],91

MN-BaB [6], OVAL [26], nnenum [16], and Marabou [27], share a common “branch and bound”92

(BaB) search structure: (i) (branch) split into smaller subproblems by using neuron splitting, which93

decides boolean values representing neuron activation status, and (ii) (bound) use abstraction and LP94

solving to approximate bounds on neuron values to determine the satisfiability of the partial activation95

pattern formed by the split. We leverage this commonality to bring proof generation capabilities with96

minimal overhead to existing DNN verification tools.97

In this paper we focus on checking proofs of unsatisfiability (unsat). A counterexample, c, returned by98

a verifier is an input that is purported to violate the property. This constitutes a proof of satisfiability99

(sat) and can easily be checked by evaluating ϕ(c,N(c)). In contrast, unsat proof, which explains100

why no possible inputs can violate the property, is inherently more complex to generate (§3), requires101

a more sophisticated encoding (§3.2), and an efficient checking algorithm (§4).102

3.1 Neuron-Splitting DNN Verification103

Alg. 1 illustrates BaBNV, a reference architecture [28] for modern DNN verifiers based on the branch-104

and-bound (BaB) framework. BaBNV takes as input a ReLU-based DNN and a property of interest. It105

iteratively alternates between two core components: Decide (line 6), which performs neuron-splitting106

by assigning an activation status (active/inactive) to a neuron, and Deduce (line 5), which checks the107

feasibility of the current activation pattern and prunes infeasible branches.108

Our key insight is that the BaB architecture of BaBNV naturally supports proof generation. To realize109

this, we augment BaBNV with a proof tree structure, stored in the proof variable (line 2). We also110

instrument BaBNV so that each branching decision made during the Decide step is explicitly recorded111

into this tree (line 10). Each node in the binary proof tree represents a neuron, and its left and right112

children correspond to the two possible activation decisions (active or inactive).113

Example Fig. 1a illustrates a DNN and how BaBNV determines unsatisfiability (i.e., verifies the114

problem) and generates the unsat proof in Fig. 1b. First, BaBNV initializes the activation pattern set115

3

ActPatterns with an empty activation pattern ∅. Then BaBNV enters a loop (line 3-line 10) to search116

for a satisfying assignment or a proof of unsatisfiability.117

1st iteration: BaBNV selects the only available activation pattern ∅ ∈ ActPatterns, and calls Deduce118

to check the feasibility of the problem based on the current activation pattern. Deduce uses abstraction119

to approximate that from the input constraints the output values are feasible for the given network.120

Since Deduce cannot determine infeasibility, BaBNV invokes Decide to randomly select a neuron121

to split. Suppose it selects neuron v4, which results in the original problem being divided into two122

independent subproblems: one where v4 is active, and another where v4 is inactive. BaBNV then adds123

v4 and v4 to ActPatterns.124

2nd iteration: BaBNV has two subproblems that can be processed in parallel. For the first subproblem125

with v4, Deduce cannot decide infeasibility, so it selects v2 to split. It then conjoins v4 with v2 and126

then with v2 and adds both conjuncts to ActPatterns. For the second subproblem with v4 inactive127

(i.e., v4), Deduce determines that the problem is unsatisfiable and BaBNV saves v4 to the proof tree, as128

node 3, to indicate one unsatisfiable pattern, i.e., whenever the network has v4 being inactive, the129

problem is unsatisfiable.130

3rd iteration: BaBNV has two subproblems for v4 ∧ v2 and v4 ∧ v2. For the first subproblem, Deduce131

cannot decide infeasibility, so it selects v1 to split. It then conjoins v1 and then v1 to the current132

activation pattern and adds them to ActPatterns. For the second one, Deduce determines that the133

problem is unsatisfiable and BaBNV saves the v4 ∧ v2 to the proof tree, as node 5.134

4th iteration: BaBNV has two subproblems for v4 ∧ v2 ∧ v1 and v4 ∧ v2 ∧ v1. Both subproblems are135

determined to be unsatisfiable, and BaBNV saves them to the proof tree as nodes 6 and 7, respectively.136

Finally, BaBNV has an empty ActPatterns, stops the search, and returns unsat and the proof tree.137

The APTP proof tree The resulting proof tree has a specific structure. First, it is a binary tree where138

each parent node must have children for both activation status values of a neuron. Second, it is a139

proof tree that captures unsatisfiability reasoning, i.e., each leaf holds the constraint showing the140

activation pattern encoded from the root to this leaf results in unsatisfiability. The tree in Fig. 1b141

demonstrates this structure. Each white node corresponds to a branching node where BaBNV makes142

decisions to split neurons. The red leaves correspond to the unsatisfiable patterns that are saved to the143

proof tree. Note that a leaf node implies the unsatisfiability of the sub-tree rooted at the leaf, e.g.,144

node 3 encodes the unsatisfiability of a set of 8 activation patterns.145

We leverage this structure to store the proof in the APTP format (§3.2) and to check it using the146

APTPchecker algorithm (§4).147

3.2 The APTP Proof Language148

We have shown that the broad class of BaBNV DNN verification techniques can generate a binary tree149

that represents a proof of unsatisfiability (§3). We define a standard proof format for specifying DNN150

proofs, APTP, that is human-readable, compact, and can be efficiently generated by verification tools151

and processed by proof checkers. APTP is inspired by the SMTLIB format [29] used for SMT solving,152

which has also been adopted by the VNNLIB language [30] to specify DNN verification problems.153

Fig. 2a presents the syntax of APTP. A proof consists of declarations and assertions. Declarations154

define input/output variables (real numbers) and hidden variables (with PWL activations like ReLU).155

Assertions encode preconditions over inputs and postconditions over outputs using logical formulas156

with comparisons and Boolean operators like and and or. More details on the syntax and semantics157

of APTP are available in (Apdx. A).158

Example The proof in Fig. 2b corresponds to the proof tree in Fig. 1b. The statement (and (<159

N_4 0)) corresponds to the rightmost path of the tree with v4 decision (leaf 3). The statement (and160

(< N_2 0) (>= N_4 0)) corresponds to the path with v4 ∧ v2 (leaf 5).161

The APTP language is intentionally designed to (a) omit explicit weights and biases to reduce the size162

of the proof structure, and (b) explicitly encode a DNF structure to enable easy parallelization. The163

weights and biases of the DNN are already recorded in the ONNX format [31], which serves as a164

standard input to both verification tools and APTP checkers, like the one we describe in §4.165

4

⟨proof⟩ ::= ⟨declarations⟩ ⟨assertions⟩
⟨declarations⟩ ::= ⟨declaration⟩ | ⟨declaration⟩ ⟨declarations⟩
⟨declaration⟩ ::= (declare-const ⟨input-vars⟩ Real)

| (declare-const ⟨output-vars⟩ Real)
| (declare-pwl ⟨hidden-vars⟩ ⟨activation⟩)

⟨input-vars⟩ ::= ⟨input-var⟩ | ⟨input-var⟩ ⟨input-vars⟩
⟨output-vars⟩ ::= ⟨output-var⟩ | ⟨output-var⟩ ⟨output-vars⟩
⟨hidden-vars⟩ ::= ⟨hidden-var⟩ | ⟨hidden-var⟩ ⟨hidden-vars⟩
⟨activation⟩ ::= ReLU | Leaky ReLU | . . .

⟨assertions⟩ ::= ⟨assertion⟩ | ⟨assertion⟩ ⟨assertions⟩
⟨assertion⟩ ::= (assert ⟨formula⟩)
⟨formula⟩ ::= (⟨operator⟩ ⟨term⟩ ⟨term⟩)

| (and ⟨formula⟩+) | (or ⟨formula⟩+)

⟨term⟩ ::= ⟨input-var⟩ | ⟨output-var⟩
| ⟨hidden-var⟩ | ⟨constant⟩

⟨operator⟩ ::= < | ≤ | > | ≥
⟨input-var⟩ ::= X_⟨constant⟩

⟨output-var⟩ ::= Y_⟨constant⟩
⟨hidden-var⟩ ::= N_⟨constant⟩
⟨constant⟩ ::= Int | Real

(a) The APTP proof language.

1 ; Declare variables
2 (declare-const X_0 Real)
3 (declare-const X_1 Real)
4 (declare-const Y_0 Real)
5 (declare-const Y_1 Real)
6 (declare-pwl N_1 ReLU)
7 (declare-pwl N_2 ReLU)
8 (declare-pwl N_3 ReLU)
9 (declare-pwl N_4 ReLU)

10 ; Input constraints
11 (assert (>= X_0 -2.0))
12 (assert (<= X_0 2.0))
13 (assert (>= X_1 -1.0))
14 (assert (<= X_1 1.0))
15 ; Output constraints
16 (assert (<= Y_0 Y_1))
17 ; Hidden constraints
18 (assert (or
19 (and (< N_4 0))
20 (and (< N_2 0)
21 (>= N_4 0))
22 (and (>= N_2 0)
23 (>= N_1 0)
24 (>= N_4 0))
25 (and (>= N_2 0)
26 (< N_1 0)
27 (>= N_4 0))))

(b) APTP example.

Fig. 2: The APTP format.

Alg. 2. APTPchecker algorithm.
input :DNNN , property ϕin ⇒ ϕout, proof
output :certified if proof is valid, otherwise uncertified

1 if ¬ RepOK (proof) then RaiseError(Invalid proof tree)
2 model← CreateStabilizedMILP(N , ϕin, ϕout) // initialize MILP model with inputs
3 while proof do
4 node← Select(proof) // get node to check
5 model← AddConstrs(model, node) // add corresponding constraints
6 if CheckFeasibility(model) then
7 return uncertified // cannot certify

8 return certified

4 Checking APTP Proofs166

We introduce a proof checker, APTPchecker, that validates APTP proofs. The checker is verifier-167

independent and supports APTP proofs generated by different verification tools. It is also efficient and168

scales to handle large proof trees.169

4.1 The Core APTPchecker Algorithm170

The goal of APTPchecker is to verify that the APTP tree generated by a DNN verification tool is cor-171

rect (i.e., the proof tree is a proof of unsatisfiability of the DNN verification problem). APTPchecker172

thus must verify that the constraint represented by each leaf node in the proof tree is unsatisfiable.173

To check each node, APTPchecker forms an MILP problem (§4.1.1) consisting of the constraint in174

Eq. 1 (the DNN, the input condition, and the negation of the output) with the constraints representing175

the activation pattern encoded by the tree path to the leaf node. APTPchecker then invokes an LP176

solver to check that the MILP problem is infeasible, which indicates unsatisfiability of the leaf node.177

Core Algorithm Alg. 2 shows a minimal (core) APTPchecker algorithm, which takes as input a178

DNN N , a property ϕin ⇒ ϕout, a proof tree proof, and returns certified if the proof tree is valid and179

uncertified otherwise. APTPchecker first checks the validity of the proof tree (line 2), i.e., the input180

must represent a proper APTP proof tree (§3.2). If the proof tree is invalid, APTPchecker raises an181

5

error. APTPchecker next creates a MILP model (line 2) representing the input. APTPchecker then182

enters a loop (line 3) that selects a (random) leaf node from the proof tree (line 4) and adds its MILP183

constraint to the model (line 5). It then checks the model using an LP solver to determine whether the184

leaf node is unsatisfiable. If the LP solver returns feasibility, APTPchecker returns uncertified, i.e.,185

it cannot verify the input proof tree. APTPchecker continues until all leaf nodes are checked and186

returns certified, indicating the proof tree is valid.187

Example For the APTP proof in Fig. 2b, we need to check that the four leaf nodes 3, 5, 6, and 7 of188

the proof tree in Fig. 1b are unsatisfiable. Assume APTPchecker first selects node 3, it forms the189

MILP problem for leaf node 3 by conjoining the constraint representing 0.6v1 + 0.9v2 − 0.1 ≤ 0190

(i.e., v4) with the constraints in Eq. 1 representing the input ranges and the DNN with the objective of191

optimizing the output. APTPchecker then invokes an LP solver, which determines that this MILP is192

infeasible, i.e., leaf node 3 indeed leads to unsatisfiability. APTPchecker continues this process for193

the other three leaf nodes and returns certified as all leaf nodes are unsatisfiable.194

Implementation and Validation APTPchecker is written in Python, and uses Gurobi [32] for LP195

solving. The core APTPchecker algorithm (Alg. 2) consists of 600 SLOC, while optimizations use196

an additional 200 SLOC. Currently, APTPchecker supports ReLU-based feed-forward (FNNs) and197

convolutional neural networks (CNNs). APTPchecker uses ONNX for neural networks and outputs198

APTP proofs. In addition, we used the CrossHair [33] symbolic execution tool to check the correctness199

of the core algorithm in APTPchecker. Specifically, CrossHair confirmed that key postconditions200

hold, e.g., that APTPchecker returns certified if and only if all leaf nodes in the proof tree are201

formally proven. While the verification is not exhaustive (CrossHair only explore program paths up202

to a certain depth), this increases confidence in the implementation’s correctness up to certain depth.203

A detailed discussion is provided in Apdx. B.204

4.1.1 MILP Formulation205

APTPchecker formulates MILP problems [34] and checks for feasible solutions using off-the-shelf206

LP solving. Formally, the MILP problem is defined as:207

(a) z(i) = W (i)ẑ(i−i) + b(i); (b) y = z(L);x = ẑ(0);

(c) ẑ
(i)
j ≥ z

(i)
j ; ẑ

(i)
j ≥ 0; (d) a

(i)
j ∈ {0, 1};

(e) ẑ
(i)
j ≤ a

(i)
j u

(i)
j ; ẑ

(i)
j ≤ z

(i)
j − l

(i)
j (1− a

(i)
j);

(2)

where x is input, y is output, and z(i), ẑ(i), W (i), and b(i) are the pre-activation, post-activation,208

weight, and bias vectors for layer i, respectively. This encodes precisely the semantics of a ReLU-209

based DNN: (a) the affine transformation computing the pre-activation value for a neuron; (b) the210

inputs and outputs in the DNN; (c) assertion that post-activation values are non-negative and no211

less than pre-activation values; (d) neuron activation status indicator variables that are either 0 or 1;212

and (e) constraints on the upper, u(i)
j , and lower, l(i)j , bounds of the pre-activation value of the jth213

neuron in the ith layer. Deactivating a neuron, a(i)j = 0, simplifies the first of the (e) to ẑ
(i)
j ≤ 0, and214

activating a neuron simplifies the second to ẑ
(i)
j ≤ z

(i)
j , which is consistent with ẑ

(i)
j = max(z

(i)
j , 0).215

4.1.2 Correctness216

Alg. 2 returns certified iff the input APTP proof tree is unsatisfiable. This proof tree encodes a217

disjunction of constraints, one per tree path, where each constraint represents an activation pattern218

of the network (the leaf node). Then each problem is reduced to a simple LP that exactly captures219

the semantics of the DNN for a specific activation pattern and thus, the algorithm introduces no220

approximations, i.e., it is sound and complete.221

Note that this correctness argument assumes that the LP solver is correct—in practice multiple solvers222

could be used to guard against errors in that component. It is standard for proof checkers to assume223

the correctness of a small set of external tools, e.g., checkers that use theorem provers assume the224

correctness of the underlying prover [35].225

6

Tab. 1: Benchmarks consist of a 8 neural networks comprised of varying numbers of CNN (C) and FNN (F)
layers, neurons, and parameters, each paired with 25 properties to form UNSAT verification instances.

Name Networks Properties
Num. Layers Neurons Param. Num.

CNN 8 1-2C;1F 320-3920 41K-180K 200

FNN 8 2-6F 64-3072 27K-1.7M 200

0 50 100 150 200

Solved problems

0

200

400

600

800

1000

R
u

nt
im

es
(s

) M+MarabouChecker

NS+APTPchecker

NS+APTPchecker(X)

NS+APTPchecker(S)

NS+APTPchecker(S+X)

Marabou

NeuralSAT

0 50 100 150 200

Solved problems

0

200

400

600

800

1000

R
u

nt
im

es
(s

) M+MarabouChecker

NS+APTPchecker

NS+APTPchecker(X)

NS+APTPchecker(S)

NS+APTPchecker(S+X)

Marabou

NeuralSAT

Fig. 3: Cactus plots for verifiers and proof checkers of FNN (left) and CNN (right) benchmarks.

4.1.3 Optimizations226

Our APTPchecker implementation employs several optimizations to improve efficiency, especially227

for large proof trees. It uses neuron stabilization to identify stable neurons (either active or inac-228

tive) and replace disjunctive constraints with linear ones, and simplifying the MILP problem and229

reducing the work of the LP solver. Additionally, it employs pruning of leaf nodes and backtracking230

to check parent nodes only when necessary, reducing the number of LP problems to be solved.231

Finally, APTPchecker leverages the tree structure of APTP proof to parallelize the checking of leaf232

nodes, making the verification process scale better to large proof trees. Additional details on these233

optimizations are available in Apdx. C.234

5 Evaluation235

We evaluate our work using the following research questions: RQ1 (§5.1): How does APTPchecker236

perform and compare prior work? RQ2 (§5.2): How does proof checking performance vary with237

verification algorithms and optimizations?238

Benchmarks We evaluate on UNSAT verification problems selected from the harder benchmark239

suite introduced in [8], which includes ACAS Xu, RESNET_A/B, CIFAR2020, MNISTFC, and240

MNIST_GDVB. As with prior work [5] we exclude ACAS Xu, which has networks with very241

low input dimensions and did not even need to use BaB on activation space to be solved. We242

also exclude RESNET, which are unsupported by the APTPchecker. This is a straightforward243

engineering limitation and there is no fundamental reason the checking algorithm is not applicable.244

From CIFAR2020, we selected CNN models with varied convolutional sizes and depths; from245

MNISTFC and MNIST_GDVB, we chose 8 FNNs of diverse sizes. For each network, we randomly246

sampled local robustness properties until we obtained 25 UNSAT instances, yielding 200 CNN and247

200 FNN problems (400 total) as shown in Tab. 1.248

Baselines The only prior DNN proof checker [36] focuses on the Marabou verifier. In con-249

trast, we adapted two verifiers: αβ-CROWN and NeuralSAT, to generate APTP proofs. RQ1 is on250

proof checking performance, so we compare Marabou and its proof checker with APTPchecker251

using NeuralSAT. RQ2 compares optimized vs. unoptimized APTPchecker. RQ3 evaluates how252

APTPchecker accommodates proofs generated by different verification algorithm variants.253

Metrics To assess performance we use the two common metrics in the verification community: time254

to solve and number of problems solved. We record time to verify, generate, and check proofs, using255

7

0 2000 4000 6000 8000 10000

Number of sub-proofs

100

101

102

103

C
ou

nt
s

APTPchecker

FNN (solved)

FNN (unsolved)

CNN (solved)

CNN (unsolved)

0 2000

#sub-proofs

100

101

102

103
APTPchecker(SX)

Fig. 4: Number of sub-proofs per problem with (right) and without (left) APTPchecker optimizations.

0 500 1000 1500 2000 2500 3000

MILP Complexity

101

102

103

104

105

C
ou

nt
s

NS+APTPchecker

FNN (solved)

FNN (unsolved)

CNN (solved)

CNN (unsolved)

0 500 1000 1500 2000 2500 3000

MILP Complexity

101

102

103

104

105

C
ou

nt
s

NS+APTPchecker(S+X)

FNN (solved)

FNN (unsolved)

CNN (solved)

CNN (unsolved)

Fig. 5: Number of constraints per problem with (right) and without (left) APTPchecker optimizations.

a 1000s timeout. A problem is “solved” if all steps complete within time. We report cactus plots256

(Fig. 3), comparing runtime and problem count. We also measure proof size (number of sub-proofs)257

and MILP complexity as the number of neurons that do not have a fixed value, i.e., the number of258

unstable neurons.259

Setup All experiments were run on a Linux machine with an AMD Threadripper 64-core 4.2GHZ260

CPU, 128GB RAM, and an NVIDIA GeForce RTX 4090 GPU with 24 GB VRAM.261

5.1 RQ1 : Proof Checking Performance262

Fig. 3 presents data on the performance of APTPchecker relative to both an underlying verifier,263

NeuralSAT, and prior work on neural network proof checking, Marabou’s proof checker. In cactus264

plots like this, lines that extend further on the x-axis are better – more problems solved – and lines265

that are lower are better – faster solve times. Another way to view these is to pick a point on the x-axis266

where the plots for two techniques are defined and think of the areas under the two curves as the267

“total cost” to solve that number of problems. The dashed lines show the performance of the verifier268

and the solid lines show the performance of the verifier, proof generation, and the proof checker.269

Several configurations of APTPchecker are shown, but in this RQ we draw the readers attention to270

the plots for the APTPchecker(S+X) configurations; the rest are discussed in detail below.271

The cactus plot for the FNN benchmark (left) shows that Marabou and its checker are able to solve272

69 problems or 35% of the benchmark, whereas APTPchecker can solve 186 or 93%. For the CNN273

benchmark (left) Marabou and its checker can solve a single benchmark, whereas APTPchecker can274

solve 177 problems or 89%. In total, APTPchecker solved 363 problems or 91%, whereas Marabou275

solved 70 problems or 18% of all instances.276

The shape of these cactus plots indicates a high-degree of variability in the cost of proof checking277

relative to verification. From Alg. 2 it is clear that both the number of leaves in the tree structure, line 4,278

and the complexity of the model to be checked, line 6, are factors that contribute to the cost of proof279

checking. To explore those factors we plot their variation across the benchmarks when running280

APTPchecker.281

Fig. 4 (left) plots a histogram of the number of sub-proofs solved per verification problem, i.e., the282

number of nodes of the proof tree. When interpreting these plots, understand that the y-axis log scale283

means that vertical distances have a different meaning as you move upward in the plot. While the284

vast majority of the verification problems have proof trees of fewer then 2000 leaves, but 17 of them285

have larger trees up to a maximum of more than 10000 leaves. Note also that even among the smaller286

8

Tab. 2: Proof statistics for best verifier configurations.

Verifier Num. Sub-Proofs MILP Complexity
Mean Median Mean Median

NeuralSAT(S) 95 36 601 545

αβ-CROWN 230 180 414 179

sized proof trees, there are some problems that cannot be solved. This is due to complexity of solving287

the MILP constraints at the leaves of those proof trees.288

Fig. 5 (left) plots a histogram of the number of occurrences of MILP problems of a given complexity289

across the benchmarks. Here again we see a spread in data, but unlike with the number of sub-proofs290

the CNN benchmarks seem to have consistently larger constraints and there is a clear bias among the291

unsolved problems towards larger constraint size. To optimize proof checking, we must address both292

of these sources of complexity.293

5.2 RQ2 : Proof Checking and Verifier Optimizations294

0 100 200 300 400

Solved problems

0

100

200

300

400

500

600

700

800

900

1000

R
u

nt
im

es
(s

)

αβ-C+APTPchecker(S+X)

αβ-C+APTPchecker(S+X)

αβ-C(BaBSR)+APTPchecker(S+X)

αβ-C(BaBSR)+APTPchecker(S+X)

NS+APTPchecker(S+X)

NS+APTPchecker(S+X)

NS(S)+APTPchecker(S+X)

NS(S)+APTPchecker(S+X)

Fig. 6: APTPchecker runtimes.

Fig. 6 shows cactus plots for two configurations of295

NeuralSAT and αβ-CROWN generated proofs across296

the benchmarks. The performance of the veri-297

fiers (dashed lines) differ across configurations and298

they are able to verify between 337 and 400 prob-299

lems. For both of the verifiers and configurations,300

APTPchecker is able to check between 93.7% and301

99.4% of the proofs that are generated. This demon-302

strates that the APTP is able to encode proofs gen-303

erated by differing neural network verification algo-304

rithms, and that APTPchecker can check them.305

We analyzed both the number of sub-proofs and306

MILP complexity for the proofs generated by the307

two best performing verifier configurations. These values follow a skewed distribution, so we report308

the mean and median in Tab. 2. The proof structures vary between verifiers: NeuralSAT produces309

smaller proof trees, but with more complex MILP problems. In contrast, αβ-CROWN generates310

significantly larger proof trees, but with simpler MILP problems. This variation suggests directions311

for future work, such as enabling NeuralSAT to generate larger proof trees with simpler MILPs for312

better parallelization, or adopting fast verification during development and switching to proof-friendly313

strategies once all properties are verified.314

6 Conclusion and Future Work315

We introduce a proof format APTP which can express proofs generated by state-of-the-art DNN316

verifiers. To check proofs in this format, we design the APTPchecker algorithm and prove it, and317

its optimizations, correct. We believe these contributions enable the community to take a critical318

step toward certifiable and reliable neural network verification, closing the gap between practical319

verification algorithms and the assurance required for deployment in real-world AI systems.320

Limitations APTPchecker can be made more scalable. Better parallel checking strategies couple321

apply stabilization optimization to sub-proof trees instead of the whole proof tree, potentially iden-322

tifying more stable neurons. Moreover, APTP’s tree structure naturally lends itself to incremental323

solving, and while solvers like Gurobi do not support this, new frameworks are emerging to support324

optimized solving of related MILP problems [37].325

Potential Negative Societal Impact The research line on DNN verification can exploited to find326

issues in DNNs and this work, which aims to improve DNN verification, indirectly supports that.327

However, DNN verification, and therefore this work, also helps to ensure that DNNs are safe and328

secure for deployment in critical applications.329

9

References330

[1] Nuro.ai, “Nuro Driver,” 2024. https://www.nuro.ai/technology.331

[2] B. Kovatchev, A. Castillo, E. Pryor, L. L. Kollar, C. L. Barnett, M. D. DeBoer, and S. A. a.332

Brown, “Neural-net artificial pancreas: A randomized crossover trial of a first-in-class automated333

insulin delivery algorithm,” Diabetes Technology & Therapeutics, vol. 26, no. 6, pp. 375–382,334

2024.335

[3] D. Hanover, A. Loquercio, L. Bauersfeld, A. Romero, R. Penicka, Y. Song, G. Cioffi, E. Kauf-336

mann, and D. Scaramuzza, “Autonomous drone racing: A survey,” IEEE Transactions on337

Robotics, 2024.338

[4] C. Brix, S. Bak, C. Liu, and T. T. Johnson, “The Fourth International Verification of Neural339

Networks Competition (VNN-COMP 2023): Summary and Results,” 2023.340

[5] H. Zhang, S. Wang, K. Xu, L. Li, B. Li, S. Jana, C.-J. Hsieh, and J. Z. Kolter, “Gen-341

eral cutting planes for bound-propagation-based neural network verification,” arXiv preprint342

arXiv:2208.05740, 2022.343

[6] C. Ferrari, M. N. Mueller, N. Jovanović, and M. Vechev, “Complete Verification via Multi-344

Neuron Relaxation Guided Branch-and-Bound,” in International Conference on Learning345

Representations, 2022.346

[7] S. Wang, H. Zhang, K. Xu, X. Lin, S. Jana, C.-J. Hsieh, and J. Z. Kolter, “Beta-crown: Efficient347

bound propagation with per-neuron split constraints for neural network robustness verification,”348

Advances in Neural Information Processing Systems, vol. 34, pp. 29909–29921, 2021.349

[8] H. Duong, D. Xu, T. Nguyen, and M. B. Dwyer, “Harnessing neuron stability to improve dnn350

verification,” Proc. ACM Softw. Eng., vol. 1, jul 2024.351

[9] N. Wetzler, M. J. Heule, and W. A. Hunt Jr, “Drat-trim: Efficient checking and trimming352

using expressive clausal proofs,” in International Conference on Theory and Applications of353

Satisfiability Testing, pp. 422–429, Springer, 2014.354

[10] F. Pollitt, M. Fleury, and A. Biere, “Faster lrat checking than solving with cadical,” in 26th355

International Conference on Theory and Applications of Satisfiability Testing (SAT 2023),356

Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2023.357

[11] P. Lammich, “Efficient verified (un) sat certificate checking,” Journal of Automated Reasoning,358

vol. 64, no. 3, pp. 513–532, 2020.359

[12] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.360

[13] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer, “Towards proving the361

adversarial robustness of deep neural networks,” Proc. 1st Workshop on Formal Verification of362

Autonomous Vehicles (FVAV), pp. 19-26, 2017.363

[14] M. J. Kochenderfer, J. E. Holland, and J. P. Chryssanthacopoulos, “Next-generation airborne col-364

lision avoidance system,” tech. rep., Massachusetts Institute of Technology-Lincoln Laboratory365

Lexington United States, 2012.366

[15] H. Duong, T. Nguyen, and M. Dwyer, “A DPLL(T) Framework for Verifying Deep Neural367

Networks,” arXiv preprint arXiv:2307.10266, 2024.368

[16] S. Bak, “nnenum: Verification of relu neural networks with optimized abstraction refinement,”369

in NASA Formal Methods Symposium, pp. 19–36, Springer, 2021.370

[17] L. Cruz-Filipe, M. J. Heule, W. A. Hunt, M. Kaufmann, and P. Schneider-Kamp, “Efficient371

certified rat verification,” in Automated Deduction–CADE 26: 26th International Conference372

on Automated Deduction, Gothenburg, Sweden, August 6–11, 2017, Proceedings, pp. 220–236,373

Springer, 2017.374

[18] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in International conference on Tools375

and Algorithms for the Construction and Analysis of Systems, pp. 337–340, Springer, 2008.376

[19] T. Bouton, D. Caminha B. de Oliveira, D. Déharbe, and P. Fontaine, “verit: an open, trustable377

and efficient smt-solver,” in International Conference on Automated Deduction, pp. 151–156,378

Springer, 2009.379

10

https://www.nuro.ai/technology

[20] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani, “The mathsat5 smt solver,” in380

International Conference on Tools and Algorithms for the Construction and Analysis of Systems,381

pp. 93–107, Springer, 2013.382

[21] J. Christ, J. Hoenicke, and A. Nutz, “Smtinterpol: An interpolating smt solver,” in International383

SPIN Workshop on Model Checking of Software, pp. 248–254, Springer, 2012.384

[22] H. Barbosa, C. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann, A. Mohamed, M. Mo-385

hamed, A. Niemetz, A. Nötzli, A. Ozdemir, M. Preiner, A. Reynolds, Y. Sheng, C. Tinelli, and386

Y. Zohar, “cvc5: A versatile and industrial-strength smt solver,” in Tools and Algorithms for the387

Construction and Analysis of Systems (D. Fisman and G. Rosu, eds.), (Cham), pp. 415–442,388

Springer International Publishing, 2022.389

[23] O. Isac, C. Barrett, M. Zhang, and G. Katz, “Neural network verification with proof production,”390

Proc. 22nd Int. Conf. on Formal Methods in Computer-Aided Design (FMCAD), 2022.391

[24] R. Desmartin, O. Isac, G. Passmore, K. Stark, G. Katz, and E. Komendantskaya, “Towards a392

certified proof checker for deep neural network verification,” 2024.393

[25] G. Passmore, S. Cruanes, D. Ignatovich, D. Aitken, M. Bray, E. Kagan, K. Kanishev, E. Maclean,394

and N. Mometto, “The imandra automated reasoning system (system description),” in Automated395

Reasoning: 10th International Joint Conference, IJCAR 2020, Paris, France, July 1–4, 2020,396

Proceedings, Part II 10, pp. 464–471, Springer, 2020.397

[26] OVAL-group, “OVAL - Branch-and-Bound-based Neural Network Verification,” 2023. https:398

//github.com/oval-group/oval-bab.399

[27] G. Katz, D. A. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah, S. Thakoor, H. Wu,400

A. Zeljić, et al., “The marabou framework for verification and analysis of deep neural networks,”401

in International Conference on Computer Aided Verification, pp. 443–452, Springer, 2019.402

[28] E. Y. Nakagawa, M. Guessi, J. C. Maldonado, D. Feitosa, and F. Oquendo, “Consolidating403

a process for the design, representation, and evaluation of reference architectures,” in 2014404

IEEE/IFIP Conference on Software Architecture, pp. 143–152, IEEE, 2014.405

[29] C. Barrett, A. Stump, C. Tinelli, et al., “The smt-lib standard: Version 2.0,” in Proceedings of406

the 8th international workshop on satisfiability modulo theories (Edinburgh, England), vol. 13,407

p. 14, 2010.408

[30] A. Tacchella, L. Pulina, D. Guidotti, and S. Demarchi, “The international benchmarks standard409

for the Verification of Neural Networks,” 2023.410

[31] J. Bai, F. Lu, and K. Zhang, “ONNX Open neural network exchange.”411

[32] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2022.412

[33] CrossHair, “An analysis tool for Python that blurs the line between testing and type systems. ,”413

2025. https://github.com/pschanely/CrossHair.414

[34] V. Tjeng, K. Y. Xiao, and R. Tedrake, “Evaluating robustness of neural networks with mixed415

integer programming,” in International Conference on Learning Representations, 2019.416

[35] P. Lammich, “Grat: a formally verified (un) sat proof checker,” SAT COMPETITION 2023,417

p. 82, 2023.418

[36] R. Desmartin, O. Isac, G. Passmore, K. Stark, E. Komendantskaya, and G. Katz, “Towards a419

certified proof checker for deep neural network verification,” in International Symposium on420

Logic-Based Program Synthesis and Transformation, pp. 198–209, Springer, 2023.421

[37] The JuMP Projet, “JuMP,” 2024.422

[38] M. R. Garey and D. S. Johnson, Computers and intractability, vol. 174. Freeman San Francisco,423

1979.424

[39] C. Barrett, L. De Moura, and P. Fontaine, “Proofs in satisfiability modulo theories,” All about425

proofs, Proofs for all, vol. 55, no. 1, pp. 23–44, 2015.426

[40] S. Conchon, A. Mebsout, and F. Zaïdi, “Certificates for parameterized model checking,” in427

FM 2015: Formal Methods: 20th International Symposium, Oslo, Norway, June 24-26, 2015,428

Proceedings 20, pp. 126–142, Springer, 2015.429

[41] A. Griggio, M. Roveri, and S. Tonetta, “Certifying proofs for sat-based model checking,” Formal430

Methods in System Design, vol. 57, no. 2, pp. 178–210, 2021.431

11

https://github.com/oval-group/oval-bab
https://github.com/oval-group/oval-bab
https://github.com/oval-group/oval-bab
https://github.com/pschanely/CrossHair

[42] A. Van Gelder, “Producing and verifying extremely large propositional refutations: Have your432

cake and eat it too,” Annals of Mathematics and Artificial Intelligence, vol. 65, pp. 329–372,433

2012.434

[43] E. Goldberg and Y. Novikov, “Verification of proofs of unsatisfiability for cnf formulas,” in435

2003 Design, Automation and Test in Europe Conference and Exhibition, pp. 886–891, IEEE,436

2003.437

[44] M. J. Heule, W. A. Hunt, and N. Wetzler, “Trimming while checking clausal proofs,” in 2013438

Formal Methods in Computer-Aided Design, pp. 181–188, IEEE, 2013.439

[45] M. J. Heule, “The drat format and drat-trim checker,” arXiv preprint arXiv:1610.06229, 2016.440

[46] H. Barbosa, A. Reynolds, G. Kremer, H. Lachnitt, A. Niemetz, A. Nötzli, A. Ozdemir,441

M. Preiner, A. Viswanathan, S. Viteri, et al., “Flexible proof production in an industrial-442

strength smt solver,” in International Joint Conference on Automated Reasoning, pp. 15–35,443

Springer International Publishing Cham, 2022.444

[47] L. De Moura and N. Bjørner, “Satisfiability modulo theories: introduction and applications,”445

Communications of the ACM, vol. 54, no. 9, pp. 69–77, 2011.446

[48] G. C. Necula, Compiling with proofs. Carnegie Mellon University, 1998.447

[49] M. Armand, G. Faure, B. Grégoire, C. Keller, L. Théry, and B. Werner, “A modular integration448

of sat/smt solvers to coq through proof witnesses,” in International Conference on Certified449

Programs and Proofs, pp. 135–150, Springer, 2011.450

[50] S. Böhme, A. C. Fox, T. Sewell, and T. Weber, “Reconstruction of z3’s bit-vector proofs in hol4451

and isabelle/hol,” in Certified Programs and Proofs: First International Conference, CPP 2011,452

Kenting, Taiwan, December 7-9, 2011. Proceedings 1, pp. 183–198, Springer, 2011.453

[51] S. Böhme and T. Weber, “Fast lcf-style proof reconstruction for z3,” in Interactive Theorem Prov-454

ing: First International Conference, ITP 2010, Edinburgh, UK, July 11-14, 2010. Proceedings455

1, pp. 179–194, Springer, 2010.456

[52] H.-J. Schurr, M. Fleury, and M. Desharnais, “Reliable reconstruction of fine-grained proofs in a457

proof assistant.,” in CADE, vol. 28, pp. 450–467, 2021.458

[53] S. Kan, A. W. Lin, P. Rümmer, and M. Schrader, “Certistr: a certified string solver,” in459

Proceedings of the 11th ACM SIGPLAN International Conference on Certified Programs and460

Proofs, pp. 210–224, 2022.461

[54] B. Andreotti, H. Lachnitt, and H. Barbosa, “Carcara: An efficient proof checker and elaborator462

for smt proofs in the alethe format,” in International Conference on Tools and Algorithms for463

the Construction and Analysis of Systems, pp. 367–386, Springer, 2023.464

[55] H.-J. Schurr, M. Fleury, H. Barbosa, and P. Fontaine, “Alethe: Towards a generic smt proof465

format,” arXiv preprint arXiv:2107.02354, 2021.466

[56] R. J. Vanderbei, “Linear programming: foundations and extensions,” Journal of the Operational467

Research Society, vol. 49, no. 1, pp. 94–94, 1998.468

12

A Syntax and Grammar of APTP469

Fig. 2a in §3.2 outlines the APTP syntax and grammar, represented as production rules. A proof is470

composed of declarations and assertions. Declarations define the variables and their types within471

the proof. Specifically, input variables (prefixed with X) and output variables (prefixed with Y) are472

declared as real numbers, representing the inputs and outputs of the network. Additionally, hidden473

variables are declared with specific piece-wise linear (PWL) activation functions, such as ReLU.474

These hidden variables correspond to the internal nodes of the neural network that process the input475

data through various activation functions.476

Assertions are logical statements that specify the conditions or properties that must hold within477

the proof. Assertions over input variables are preconditions and those over output variables are478

post-conditions. Each assertion is composed of a formula, which can involve terms and logical479

operators. Formulas include simple comparisons between terms (e.g., less than, greater than) or more480

complex logical combinations using and and or operators. The terms used in these formulas can be481

variables or constants.482

The declare-* statements declare input, output, and hidden variables, while the assert statements483

specify the constraints on these variables (i.e., the pre and postcondition of the desired property). The484

hidden constraints represent the activation patterns of the hidden neurons in the network (i.e., the485

proof tree). Each and statement represents a tree path that represents an activation pattern.486

B Correctness of APTPchecker Implementation487

We were able to verify the implementation of the core APTPchecker algorithm (§4.1) using488

the CrossHair [33] symbolic execution for upto certain thresholds (e.g., timeout per condition489

per_condition_timeout=10).490

To perform such analysis, we need to create a simplified version of APTPchecker1 including: (1)491

No optimization – remove all optimizations in Apdx. C; (2) Assume that Gurobi (MIP) is correct,492

therefore, the condition indicating whether MIP is correct or not must be made up (e.g., sum(n) ≥ 0493

– summation of all literals (e.g., variable and branch condition) in a leaf node); and (3) Add pre- and494

post-conditions to the main function. This make APTPchecker codebase minimal with just about495

100 LoC. In particular, some pre- and post- conditions are listed in Listing 1.496

1 """497
2 pre: isinstance(proof , list)498
3 pre: all(isinstance(p, list) for p in proof)499
4 post: _ in {CERTIFIED , UNCERTIFIED}500
5 post: (_ == UNCERTIFIED) == (any(sum(n) < 0 for n in proof))501
6 post: (_ == CERTIFIED) == (all(sum(n) >= 0 for n in proof))502
7 """503

Listing 1: Pre- and Post- Conditions for CrossHair

CrossHair outputs are shown in Listing 2.504

1 attempt_call () Postcondition confirmed.505
2 analyze_calltree () Path tree stats {CONFIRMED :58}506
3 analyze_calltree () Iter complete. Worst status found so far: UNKNOWN507
4 analyze_calltree () Exceeded condition timeout , stopping508
5 analyze_calltree () Aborted calltree search with UNKNOWN and 0 messages. Number of509

iterations: 58510
6 analyze_class () Analyzing class ProofReturnStatus511
7 condition_parser () Using parsers: (AnalysisKind.PEP316 , AnalysisKind.icontract ,512

AnalysisKind.deal)513
8 analyze_class () Analyzing class ProofTree514
9 condition_parser () Using parsers: (AnalysisKind.PEP316 , AnalysisKind.icontract ,515

AnalysisKind.deal)516
10 analyze_function () Analyzing mip_worker517
11 condition_parser () Using parsers: (AnalysisKind.PEP316 , AnalysisKind.icontract ,518

AnalysisKind.deal)519

Listing 2: CrossHair traces

1https://anonymous.4open.science/r/APTPchecker-Symex-7865/checker/checker_testable.py

13

https://anonymous.4open.science/r/APTPchecker-Symex-7865/checker/checker_testable.py

C Optimizations520

While the core APTPchecker algorithm in Alg. 2 is minimal, it can be inefficient. APTPchecker521

employs several optimizations to improve its efficiency. These are crucial for checking large proof522

trees generated for challenging problems.523

Neuron Stabilization A primary challenge in DNN analysis is the presence of large numbers of524

piece-wise linear constraints (e.g., ReLU) which generate a large number of branches and yield large525

proof trees. In the MILP formulation, this creates many disjunctions which are hard to solve. To526

reduce the number of disjunctions, APTPchecker uses neuron stabilization [8] to determine neurons527

that are stable, either active or inactive, for all inputs defined by the property pre-condition. For all528

stable neurons, the disjunctive ReLU constraint is replaced with a linear constraint that represents the529

neuron’s value. This simplifies the MILP problem.530

APTPchecker traverses the DNN and computes stable neurons. It initializes the MILP model with531

input constraints and then iterates over each layer of the network. Next, for each layer, it creates532

constraints depending on the layer type. Moreover, it uses approximation to estimate bounds of533

neuron values to determine neuron stability. Next, it filters unstable neurons and attempts to make534

them stable by optimizing either their lower or upper bounds.535

Pruning Leaf Nodes APTPchecker uses a backtracking mechanism to check the parent node only536

when the child nodes are infeasible. Specifically, if it determines unsatisfiability of leaf l, it will check537

the parent p of l. If p is unsatisfiable it immediately removes the children of p (more specifically the538

sibling of l). Next it backtracks to the parent of p and repeats until meeting a stopping criteria. This539

optimization reduces the number of LP problems that need to be solved, making the proof checking540

process more efficient.541

Parallelization APTPchecker leverages the structure of APTP proof tree to parallelize the checking542

of leaf nodes. Each tree path is an independent sub-proof and partitions of the tree allow checker to543

leverage multiprocessing to check large proof trees efficiently.544

C.1 Proof Checking Optimizations545

The performance cactus plots Fig. 3 present an ablation study of the pruning (X) and stabilization (S)546

optimizations of APTPchecker. The trend across both benchmarks is consistent with pruning (yellow)547

and stabilization (blue) improving the number of problems solved by 5% and 36%, respectively,548

over the unoptimized APTPchecker (green). The combination of optimizations (red) improves the549

number of solved problems by 46%, which is more than the sum of their individual improvements550

demonstrating that the methods create opportunities for one another for further optimization.551

The Fig. 4 (right) and Fig. 5 (right) explore the impact of the S and X optimizations on the number552

of sub-proofs and MILP complexity. Across the benchmarks optimizations reduce the number of553

sub-proofs is to less than 1000 and MILP complexity to less than 2000. The reduction in sub-554

proofs directly contributes to the increase in performance of APTPchecker, but the reduction in555

MILP complexity is more subtle. Integer programming, and thus MILP, is known to be NP-Hard in556

general [38]. The stabilization optimization addresses this complexity by calculating sets of variables557

that are forced to take on specific values based on other constraints in the MILP problem. For each558

such variable, the constraints associated with it is effectively eliminated. We can observe this in559

comparing the left and right of Fig. 5 where we see both constraints of higher complexity eliminated560

and the peak of the constraint distribution shifted downward from 400 to 100 constraints.561

D Related Work562

Proof checking has been widely-recognized in the field of constraint solving such as SAT/SMT563

solving. (e.g., [39, 40, 41]). There is extensive literature on clausal proof generation and checking for564

SAT solvers [42, 43, 44, 9, 45]. Most modern SAT solvers can produce resolution-based proofs in565

standard formats (e.g., DRAT [9]), which can be independently checked by proof checkers, e.g., by566

efficient, untrusted programs such as DRAT-trim [9] or by certified, slower programs that work on567

extended formats such as LRAT [17] and GRAT [11].568

14

SMT proof checkers [46, 47, 48] share the same purpose of checking unsatisfiability proofs, but they569

are more complex than SAT proof checkers due to the richer languages and theories of SMT formulas570

(e.g., theory of strings). Two significant proof-producing state-of-the-art SMT solvers are z3 [18] and571

veriT [19] that both can have their proofs successfully reconstructed in proof assistants [49, 50, 51, 52].572

Other proof-producing SMT solvers are MathSAT5 [20] and SMTInterpol [21], CVC5 [22] and573

CertiStr [53]. Recently, a high-performance stand-alone checker Carcara [54] for the Alethe [55]574

proof format was also introduced.575

Compared to SAT/SMT, DNN verification is a relatively new field, and the development of proof576

checkers for DNN verifiers is few. To the best of our knowledge, there is only one line of work [23,577

24] that is explicitly for the Marabou. This work uses Farkas’s lemma [56] for checking and is578

implemented in the Imandra [25] that can produce verifiable code. Our work generalizes to neuron-579

splitting based DNN verification and introduces a new, more expressive proof format, APTP, that can580

be adopted by other DNN verifiers. Our proof checker, APTPchecker, is also significantly more581

capable (§5.1).582

15

NeurIPS Paper Checklist583

1. Claims584

Question: Do the main claims made in the abstract and introduction accurately reflect the585

paper’s contributions and scope?586

Answer: [Yes]587

Justification: Our claims match our theoretical and empirical results. APTPchecker solved588

more problems than SoTA checkers across benchmarks.589

Guidelines:590

• The answer NA means that the abstract and introduction do not include the claims591

made in the paper.592

• The abstract and/or introduction should clearly state the claims made, including the593

contributions made in the paper and important assumptions and limitations. A No or594

NA answer to this question will not be perceived well by the reviewers.595

• The claims made should match theoretical and experimental results, and reflect how596

much the results can be expected to generalize to other settings.597

• It is fine to include aspirational goals as motivation as long as it is clear that these goals598

are not attained by the paper.599

2. Limitations600

Question: Does the paper discuss the limitations of the work performed by the authors?601

Answer: [Yes]602

Justification: The limitations are explicitly mentioned in §6.603

Guidelines:604

• The answer NA means that the paper has no limitation while the answer No means that605

the paper has limitations, but those are not discussed in the paper.606

• The authors are encouraged to create a separate "Limitations" section in their paper.607

• The paper should point out any strong assumptions and how robust the results are to608

violations of these assumptions (e.g., independence assumptions, noiseless settings,609

model well-specification, asymptotic approximations only holding locally). The authors610

should reflect on how these assumptions might be violated in practice and what the611

implications would be.612

• The authors should reflect on the scope of the claims made, e.g., if the approach was613

only tested on a few datasets or with a few runs. In general, empirical results often614

depend on implicit assumptions, which should be articulated.615

• The authors should reflect on the factors that influence the performance of the approach.616

For example, a facial recognition algorithm may perform poorly when image resolution617

is low or images are taken in low lighting. Or a speech-to-text system might not be618

used reliably to provide closed captions for online lectures because it fails to handle619

technical jargon.620

• The authors should discuss the computational efficiency of the proposed algorithms621

and how they scale with dataset size.622

• If applicable, the authors should discuss possible limitations of their approach to623

address problems of privacy and fairness.624

• While the authors might fear that complete honesty about limitations might be used by625

reviewers as grounds for rejection, a worse outcome might be that reviewers discover626

limitations that aren’t acknowledged in the paper. The authors should use their best627

judgment and recognize that individual actions in favor of transparency play an impor-628

tant role in developing norms that preserve the integrity of the community. Reviewers629

will be specifically instructed to not penalize honesty concerning limitations.630

3. Theory assumptions and proofs631

Question: For each theoretical result, does the paper provide the full set of assumptions and632

a complete (and correct) proof?633

Answer: [Yes]634

16

Justification: The correctness arguments have been provided in §4.1.2 and Apdx. B.635

Guidelines:636

• The answer NA means that the paper does not include theoretical results.637

• All the theorems, formulas, and proofs in the paper should be numbered and cross-638

referenced.639

• All assumptions should be clearly stated or referenced in the statement of any theorems.640

• The proofs can either appear in the main paper or the supplemental material, but if641

they appear in the supplemental material, the authors are encouraged to provide a short642

proof sketch to provide intuition.643

• Inversely, any informal proof provided in the core of the paper should be complemented644

by formal proofs provided in appendix or supplemental material.645

• Theorems and Lemmas that the proof relies upon should be properly referenced.646

4. Experimental result reproducibility647

Question: Does the paper fully disclose all the information needed to reproduce the main ex-648

perimental results of the paper to the extent that it affects the main claims and/or conclusions649

of the paper (regardless of whether the code and data are provided or not)?650

Answer: [Yes]651

Justification: The model architectures and configurations used are provided in §5.652

Guidelines:653

• The answer NA means that the paper does not include experiments.654

• If the paper includes experiments, a No answer to this question will not be perceived655

well by the reviewers: Making the paper reproducible is important, regardless of656

whether the code and data are provided or not.657

• If the contribution is a dataset and/or model, the authors should describe the steps taken658

to make their results reproducible or verifiable.659

• Depending on the contribution, reproducibility can be accomplished in various ways.660

For example, if the contribution is a novel architecture, describing the architecture fully661

might suffice, or if the contribution is a specific model and empirical evaluation, it may662

be necessary to either make it possible for others to replicate the model with the same663

dataset, or provide access to the model. In general. releasing code and data is often664

one good way to accomplish this, but reproducibility can also be provided via detailed665

instructions for how to replicate the results, access to a hosted model (e.g., in the case666

of a large language model), releasing of a model checkpoint, or other means that are667

appropriate to the research performed.668

• While NeurIPS does not require releasing code, the conference does require all submis-669

sions to provide some reasonable avenue for reproducibility, which may depend on the670

nature of the contribution. For example671

(a) If the contribution is primarily a new algorithm, the paper should make it clear how672

to reproduce that algorithm.673

(b) If the contribution is primarily a new model architecture, the paper should describe674

the architecture clearly and fully.675

(c) If the contribution is a new model (e.g., a large language model), then there should676

either be a way to access this model for reproducing the results or a way to reproduce677

the model (e.g., with an open-source dataset or instructions for how to construct678

the dataset).679

(d) We recognize that reproducibility may be tricky in some cases, in which case680

authors are welcome to describe the particular way they provide for reproducibility.681

In the case of closed-source models, it may be that access to the model is limited in682

some way (e.g., to registered users), but it should be possible for other researchers683

to have some path to reproducing or verifying the results.684

5. Open access to data and code685

Question: Does the paper provide open access to the data and code, with sufficient instruc-686

tions to faithfully reproduce the main experimental results, as described in supplemental687

material?688

17

Answer: [Yes]689

Justification: The data and code with instructions to reproduce the results have been uploaded690

to an anonymized repo.691

Guidelines:692

• The answer NA means that paper does not include experiments requiring code.693

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/694

guides/CodeSubmissionPolicy) for more details.695

• While we encourage the release of code and data, we understand that this might not be696

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not697

including code, unless this is central to the contribution (e.g., for a new open-source698

benchmark).699

• The instructions should contain the exact command and environment needed to run700

to reproduce the results. See the NeurIPS code and data submission guidelines (https:701

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.702

• The authors should provide instructions on data access and preparation, including how703

to access the raw data, preprocessed data, intermediate data, and generated data, etc.704

• The authors should provide scripts to reproduce all experimental results for the new705

proposed method and baselines. If only a subset of experiments are reproducible, they706

should state which ones are omitted from the script and why.707

• At submission time, to preserve anonymity, the authors should release anonymized708

versions (if applicable).709

• Providing as much information as possible in supplemental material (appended to the710

paper) is recommended, but including URLs to data and code is permitted.711

6. Experimental setting/details712

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-713

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the714

results?715

Answer: [Yes]716

Justification: Experimental details have been provided in §5.717

Guidelines:718

• The answer NA means that the paper does not include experiments.719

• The experimental setting should be presented in the core of the paper to a level of detail720

that is necessary to appreciate the results and make sense of them.721

• The full details can be provided either with the code, in appendix, or as supplemental722

material.723

7. Experiment statistical significance724

Question: Does the paper report error bars suitably and correctly defined or other appropriate725

information about the statistical significance of the experiments?726

Answer: [NA]727

Justification: Results are deterministic on the benchmarks, no random process involved, and728

no error bars need to be provided.729

Guidelines:730

• The answer NA means that the paper does not include experiments.731

• The authors should answer "Yes" if the results are accompanied by error bars, confi-732

dence intervals, or statistical significance tests, at least for the experiments that support733

the main claims of the paper.734

• The factors of variability that the error bars are capturing should be clearly stated (for735

example, train/test split, initialization, random drawing of some parameter, or overall736

run with given experimental conditions).737

• The method for calculating the error bars should be explained (closed form formula,738

call to a library function, bootstrap, etc.)739

• The assumptions made should be given (e.g., Normally distributed errors).740

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error741

of the mean.742

• It is OK to report 1-sigma error bars, but one should state it. The authors should743

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis744

of Normality of errors is not verified.745

• For asymmetric distributions, the authors should be careful not to show in tables or746

figures symmetric error bars that would yield results that are out of range (e.g. negative747

error rates).748

• If error bars are reported in tables or plots, The authors should explain in the text how749

they were calculated and reference the corresponding figures or tables in the text.750

8. Experiments compute resources751

Question: For each experiment, does the paper provide sufficient information on the com-752

puter resources (type of compute workers, memory, time of execution) needed to reproduce753

the experiments?754

Answer: [Yes]755

Justification: Detailed hardware resources are provided in §5.756

Guidelines:757

• The answer NA means that the paper does not include experiments.758

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,759

or cloud provider, including relevant memory and storage.760

• The paper should provide the amount of compute required for each of the individual761

experimental runs as well as estimate the total compute.762

• The paper should disclose whether the full research project required more compute763

than the experiments reported in the paper (e.g., preliminary or failed experiments that764

didn’t make it into the paper).765

9. Code of ethics766

Question: Does the research conducted in the paper conform, in every respect, with the767

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?768

Answer: [Yes]769

Justification: We have acknowledged the NeurIPS Code of Ethics.770

Guidelines:771

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.772

• If the authors answer No, they should explain the special circumstances that require a773

deviation from the Code of Ethics.774

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-775

eration due to laws or regulations in their jurisdiction).776

10. Broader impacts777

Question: Does the paper discuss both potential positive societal impacts and negative778

societal impacts of the work performed?779

Answer: [Yes]780

Justification: They have been discussed in §6.781

Guidelines:782

• The answer NA means that there is no societal impact of the work performed.783

• If the authors answer NA or No, they should explain why their work has no societal784

impact or why the paper does not address societal impact.785

• Examples of negative societal impacts include potential malicious or unintended uses786

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations787

(e.g., deployment of technologies that could make decisions that unfairly impact specific788

groups), privacy considerations, and security considerations.789

19

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied790

to particular applications, let alone deployments. However, if there is a direct path to791

any negative applications, the authors should point it out. For example, it is legitimate792

to point out that an improvement in the quality of generative models could be used to793

generate deepfakes for disinformation. On the other hand, it is not needed to point out794

that a generic algorithm for optimizing neural networks could enable people to train795

models that generate Deepfakes faster.796

• The authors should consider possible harms that could arise when the technology is797

being used as intended and functioning correctly, harms that could arise when the798

technology is being used as intended but gives incorrect results, and harms following799

from (intentional or unintentional) misuse of the technology.800

• If there are negative societal impacts, the authors could also discuss possible mitigation801

strategies (e.g., gated release of models, providing defenses in addition to attacks,802

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from803

feedback over time, improving the efficiency and accessibility of ML).804

11. Safeguards805

Question: Does the paper describe safeguards that have been put in place for responsible806

release of data or models that have a high risk for misuse (e.g., pretrained language models,807

image generators, or scraped datasets)?808

Answer: [NA]809

Justification: No data or models are released.810

Guidelines:811

• The answer NA means that the paper poses no such risks.812

• Released models that have a high risk for misuse or dual-use should be released with813

necessary safeguards to allow for controlled use of the model, for example by requiring814

that users adhere to usage guidelines or restrictions to access the model or implementing815

safety filters.816

• Datasets that have been scraped from the Internet could pose safety risks. The authors817

should describe how they avoided releasing unsafe images.818

• We recognize that providing effective safeguards is challenging, and many papers do819

not require this, but we encourage authors to take this into account and make a best820

faith effort.821

12. Licenses for existing assets822

Question: Are the creators or original owners of assets (e.g., code, data, models), used in823

the paper, properly credited and are the license and terms of use explicitly mentioned and824

properly respected?825

Answer: [Yes]826

Justification: We cited both αβ-CROWN, NeuralSAT, Marabou and its checker, and libraries827

used for experimental evaluation.828

Guidelines:829

• The answer NA means that the paper does not use existing assets.830

• The authors should cite the original paper that produced the code package or dataset.831

• The authors should state which version of the asset is used and, if possible, include a832

URL.833

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.834

• For scraped data from a particular source (e.g., website), the copyright and terms of835

service of that source should be provided.836

• If assets are released, the license, copyright information, and terms of use in the package837

should be provided. For popular datasets, paperswithcode.com/datasets has curated838

licenses for some datasets. Their licensing guide can help determine the license of a839

dataset.840

• For existing datasets that are re-packaged, both the original license and the license of841

the derived asset (if it has changed) should be provided.842

20

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to843

the asset’s creators.844

13. New assets845

Question: Are new assets introduced in the paper well documented and is the documentation846

provided alongside the assets?847

Answer: [NA]848

Justification: No new assets are introduced in this paper.849

Guidelines:850

• The answer NA means that the paper does not release new assets.851

• Researchers should communicate the details of the dataset/code/model as part of their852

submissions via structured templates. This includes details about training, license,853

limitations, etc.854

• The paper should discuss whether and how consent was obtained from people whose855

asset is used.856

• At submission time, remember to anonymize your assets (if applicable). You can either857

create an anonymized URL or include an anonymized zip file.858

14. Crowdsourcing and research with human subjects859

Question: For crowdsourcing experiments and research with human subjects, does the paper860

include the full text of instructions given to participants and screenshots, if applicable, as861

well as details about compensation (if any)?862

Answer: [NA]863

Justification: The paper paper does not involve crowdsourcing nor research with human864

subjects.865

Guidelines:866

• The answer NA means that the paper does not involve crowdsourcing nor research with867

human subjects.868

• Including this information in the supplemental material is fine, but if the main contribu-869

tion of the paper involves human subjects, then as much detail as possible should be870

included in the main paper.871

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,872

or other labor should be paid at least the minimum wage in the country of the data873

collector.874

15. Institutional review board (IRB) approvals or equivalent for research with human875

subjects876

Question: Does the paper describe potential risks incurred by study participants, whether877

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)878

approvals (or an equivalent approval/review based on the requirements of your country or879

institution) were obtained?880

Answer: [NA]881

Justification: The paper does not involve crowdsourcing nor research with human subjects.882

Guidelines:883

• The answer NA means that the paper does not involve crowdsourcing nor research with884

human subjects.885

• Depending on the country in which research is conducted, IRB approval (or equivalent)886

may be required for any human subjects research. If you obtained IRB approval, you887

should clearly state this in the paper.888

• We recognize that the procedures for this may vary significantly between institutions889

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the890

guidelines for their institution.891

• For initial submissions, do not include any information that would break anonymity (if892

applicable), such as the institution conducting the review.893

21

16. Declaration of LLM usage894

Question: Does the paper describe the usage of LLMs if it is an important, original, or895

non-standard component of the core methods in this research? Note that if the LLM is used896

only for writing, editing, or formatting purposes and does not impact the core methodology,897

scientific rigorousness, or originality of the research, declaration is not required.898

Answer: [NA]899

Justification: LLM was only used for revising writing and suggesting words.900

Guidelines:901

• The answer NA means that the core method development in this research does not902

involve LLMs as any important, original, or non-standard components.903

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what904

should or should not be described.905

22

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Proof Generation for DNN Verification
	Neuron-Splitting DNN Verification
	The APTP Proof Language

	Checking APTP Proofs
	The Core APTPchecker Algorithm
	MILP Formulation
	Correctness
	Optimizations

	Evaluation
	RQ1 : Proof Checking Performance
	RQ2 : Proof Checking and Verifier Optimizations

	Conclusion and Future Work
	Syntax and Grammar of APTP
	Correctness of APTPchecker Implementation
	Optimizations
	Proof Checking Optimizations

	Related Work

