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Abstract. Deep Neural Networks (DNNs) are increasingly deployed
in critical applications, where ensuring their safety and robustness is
paramount. We present NeuralSAT, a high-performance DNN verifica-
tion tool that uses the DPLL(T) framework and supports a wide-range
of network architectures and activation functions. Since its debut in
VNN-COMP’23, in which it achieved the New Participant Award and
ranked 4th overall, NeuralSAT has advanced significantly, achieving sec-
ond place in VNN-COMP’24. This paper presents and evaluates the
latest development of NeuralSAT, focusing on the versatility, ease of
use, and competitive performance of the tool. NeuralSAT is available
at: https://github.com/dynaroars/neuralsat.
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1 Introduction

Deep Neural Networks (DNNs) have emerged as an effective approach for tack-
ling challenging real-world problems. However, just like traditional software,
DNNs can have “bugs”, e.g., producing unexpected results on inputs that are
different from those in training data, and be attacked, e.g., small perturbations
to the inputs by a malicious adversary or even sensor imperfections can result
in misclassification [20,36,33,35,13]. These issues naturally raise the question
of how DNNs should be tested, validated, and ultimately verified to meet the
requirements of relevant robustness or safety standards [12].

To address this question, researchers have developed a wide variety of algo-
rithmic techniques and supporting tools to verify DNNs (§5). As a result, DNN
verification has become a vibrant research area, and the community has created
the annual DNN verification competition (VNN-COMP) to compare different
approaches, showcase the latest advances, and help shape future directions of
the field [5]. The first VNN-COMP was established in 2020, and the latest iter-
ation of the competition, VNN-COMP’24, was held with CAV in 2024.

Unlike research papers, which often focus on theoretical contributions and
has a smaller evaluation scale, VNN-COMP evaluates tools based on their prac-
tical performance on a wide range of benchmarks and properties and thus at-
tracts the state-of-the-art in the field including: αβ-CROWN, Marabou (succes-
sor of Reluplex), nnenum, and MN-BaB (successor of ERAN). Among these tools,

https://github.com/dynaroars/neuralsat
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αβ-CROWN has been the most successful, winning the competitions four consec-
utive times from VNN-COMP’21 to VNN-COMP’24.

In 2023, we introduced the NeuralSAT233 verification tool in VNN-COMP’23,
where it ranked 4th overall and received the New Participation award (and also
won the “TLL Verify Bench” benchmark category). All versions of NeuralSAT
uses a DPLL(T) approach with conflict-clause learning capability to handle
difficult problems. We introduced several major improvements to NeuralSAT
such as parallel DPLL(T) and neuron stabilization optimization [9] to define
NeuralSAT24, that demonstrated competitive performance with αβ-CROWN on
fully-connected networks. Further extensions supported a much larger set of
network layer and activation function types and this NeuralSAT24 participated
in VNN-COMP’24, where it ranked 2nd overall behind αβ-CROWN.

In this paper, we describe the latest version of NeuralSAT, which includes
further extensions to optimize verification for more complex DNNs; the paper
also reports on the extensions in NeuralSAT24 that have not been previously
reported. We focus on features and engineering optimizations in NeuralSAT that
are essential for creating a high-performance tool. We evaluate NeuralSAT in
comparison to both NeuralSAT24 and the latest versions αβ-CROWN, and we
illustrate how NeuralSAT facilitates ease of use by avoiding the complexities
parameter tuning necessary in other verifiers.

Users of NeuralSAT. We designed NeuralSAT for (i) researchers who want to
experiment with DNN verification techniques, and (ii) practitioners who want
to verify their networks. For the first type of users, the DPLL(T) framework,
which is carefully designed to be modular and extensible, serves as a foundation
for incorporating additional algorithmic techniques from the broader SMT and
DNN reasoning literature. For the second type of users, NeuralSAT works out
of the box and supports various types of network architecture with minimal
configuration and tuning. Our goal is to create a high-performance yet easy-to-
use DNN verification tool that enables practitioners to employ state-of-the-art
DNN reasoning techniques.

2 Background and Overview

2.1 The DNN verification problem

Deep Neural Network (DNN) A deep neural network consists of an input layer,
multiple hidden layers, and an output layer. Each layer contains neurons con-
nected to neurons in previous layers via predefined weights obtained through
training with data. A fully-connected (FC) layer is a layer where each neuron is
connected to every neuron in the previous layer.

3 We use subscripts to distinguish previous versions of NeuralSAT from the version
discussed in this paper.
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The output of a DNN is computed by iteratively calculating the values of
neurons in each layer. Neurons in the input layer receive the input data. Neu-
rons in the hidden layers compute their values through an affine transforma-
tion followed by an activation function, like the popular Rectified Linear Unit
(ReLU ) activation. For ReLU activation, the value of a hidden neuron y is
given by ReLU(w1v1 + . . . + wnvn + b), where b is the bias parameter for y,
wi, . . . , wn are the weights of y, v1, . . . , vn are the neuron values from the pre-
ceding layer, w1v1 + · · · + wnvn + b represents the affine transformation, and
ReLU(x) = max(x, 0) defines the ReLU activation. A ReLU-activated neuron is
active, if its input value is greater than zero, or inactive, otherwise.

DNN Verification Given a DNN N and a property ϕ, the DNN verification
problem asks if ϕ is a valid property of N . Typically, ϕ is a formula of the form
ϕin ⇒ ϕout, where ϕin is a property over the inputs of N and ϕout is a property
over the outputs of N .

Modern techniques often treat the DNN verification as a satisfiability prob-
lem. More specifically, given a formula α representing the ReLU-based DNN N
and the formulae ϕin ⇒ ϕout representing the property to be proved, a DNN
verifier checks the satisfiability of the formula

α ∧ ϕin ∧ ϕout. (1)

The verifier returns unsat if Eq. 1 is unsatisfiable, indicating that ϕ is a valid
property of N , and sat otherwise, indicating the ϕ is not a valid property of N .

2.2 Overview of NeuralSAT
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Fig. 1: NeuralSAT.

Fig. 1 gives an overview of NeuralSAT, which is
modeled after the DPLL(T) framework in SMT
solving [6,15]. NeuralSAT consists of standard
DPLL components (non-shaded) and a theory or
T-solver (shaded) dedicated for DNN reasoning.

DPLL search NeuralSAT treats DNN verification
as a search for an activation pattern, represented
as an assignment σ which maps truth values to
the variables representing the activation status of
neurons (BooleanAbstraction). In the beginning
σ is empty, and NeuralSAT uses decision heuris-
tics to select unassigned variables (Select) and
assigns truth values4 to them (Decide). After each
assignment, NeuralSAT infers additional assignments caused by the current as-
signment through Boolean constraint propagation(BCP). Next, it invokes the T-
solver (Deduce) to check the feasibility of the current assignment in σ. If it is fea-
sible, NeuralSAT continues to search for new assignments. Otherwise, NeuralSAT
4 As described later, NeuralSAT uses a parallel DPLL and thus will explore both

branches of the decision.
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detects a conflict, and it learns clauses to remember and backtracks to a previous
assignment (Analyze-Conflict).

This process repeats until NeuralSAT can no longer backtrack, at which point
it returns unsat, indicating the DNN has the property. Otherwise, it finds a com-
plete assignment for all Boolean variables (i.e., a satisfying activation pattern),
and returns sat. The user can query for a counterexample input in the case of
sat.

If the NeuralSAT search falls into a local optima, it will restart the search by
clearing all assignments that have been made. NeuralSAT retains learned conflict
clauses learned, to avoid reaching the same state in the subsequent search.

NeuralSAT-specific Components NeuralSAT follows the standard DPLL algo-
rithm, but includes several components specific for DNN reasoning [9].

T-Solver To check that current assignments in σ is feasible with the the formula
in Eq. 1, the T-solver uses LP solving and polytope abstraction [11,32] to com-
pute neuron bounds from the given precondition and σ, and checks the bounds
are feasible with respect to the specified post-condition. Using LP solving and
abstraction is standard in modern DNN verification tools [21,32,27,3]. However,
the T-solver also implements neuron stabilization by creating and solving custom
MILP constraints to determine if a neuron is stable (i.e., it is always active or
inactive). If a neuron is stable, the T-solver does not need to guess its activation
status, and thus reduces the search space.

Parallel DPLL NeuralSAT leverages multiprocessing to parallelize its DPLL
search. When assigning values to variables, NeuralSAT considers both options
(active or inactive) for each variable, and then splits the search space into two
disjoint subspaces and processes them in parallel. When a conflict is detected in
one subspace, NeuralSAT prunes that subspace and continues the search in the
remaining subspaces. This parallelism not only speeds up the process but also
facilitates information exchange such as learned clauses among search subspaces.

3 Implemented Features and Optimizations

From our experience evaluating tools and participating in competitions, we found
that the novelty described in research papers often does not translate to com-
petitive performance or practical usability. Instead, the implementation details,
such as being versatile, easy to use, and employing “engineering” optimizations to
improve performance matter perhaps just as much. Tab. 1 shows the features of
NeuralSAT, many of which are often overlooked in research papers (e.g., absent
in [9]) but are critical for building a long-term and high-performance tool.

Versatility The work in [9] focused on ReLU-based and fully-connected networks.
NeuralSAT has since been extended to support a wide range of network architec-
tures and activation functions. Currently, NeuralSAT works with fully connected
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Tab. 1: NeuralSAT’s features.
Feature Supported

Network Type Acyclic computation graphs, e.g., Feed-forward, Residual
Layer Type FC, CNN, MaxPool, BatchNorm, Softmax

Activation Function ReLU, Sigmoid, Tanh, Sign, Exp
Abstract Domain Polytope, Interval
Search Algorithm Parallel DPLL(T)

Hardware Multi-core CPU, GPU
Optimization Adv. Attacks, Input splitting, Large Output Opt., MILP solving

Property Robustness, Safety
Input Pytorch, ONNX, VNN-LIB

Output (sat, unsat, timeout), counter-examples

(FC), convolutional (CNN), residual (ResNet), batch normalization (BN) net-
works, etc. We also support mixtures of different types, e.g., VAEs which are
large residual CNN-based networks. In addition to ReLU, NeuralSAT supports
other major activation functions including sigmoid, tanh, and power.

Note that these are also supported by other DNN verification tools such
as αβ-CROWN though the LiRPA library [31]. However, it is straight-forward to
extend NeuralSAT to support new layer or activation functions, by modifying
the abstractions used in the T-solver to compute the approximation bounds of
activation functions over different network layers. For example, VNN-COMP’24
has networks with “Exponential” and “Reciprocal” layers that were not supported
by existing work and so we just extend our abstraction to compute the lower
and upperbounds for these types of layers to allow NeuralSAT to verify them.

Standard Input and Output Formats NeuralSAT supports for inputs networks
in the standard ONNX format [2] and properties in VNNLIB format [23]. The
output of NeuralSAT is reported as unsat (property proved), sat (property
disproved), or unknown and timeout (property cannot be proved). NeuralSAT
also generates counterexamples for sat results in text format supported by VNN-
COMPs.

Fully Automatic, but Configurable An important decision in designing NeuralSAT
is to make it fully automatic and so that for end-users it “just works”, perhaps
even at the cost of some runtime. Users can simply apply NeuralSAT to check
their networks and desired properties without any parameter configuration. For
example, NeuralSAT runs on all VNN-COMP benchmarks with zero tuning.
In contrast, top tools, such as αβ-CROWN, require significant tuning to perform
effectively (more details in §4).

However, NeuralSAT has many settings that can be configured by the users,
such as the number of threads, number of restarts, timeout, etc. These options
are useful for experts who want to explore different settings and optimize the
performance of NeuralSAT for their specific problems.



6 Duong et al.

Engineering Optimizations Despite the focus on theoretical contributions in re-
search, engineering matters! NeuralSAT employs various engineering optimiza-
tions to improve performance. First, like most high performing DNN verifiers,
NeuralSAT uses adversarial attack algorithms, e.g., derivative-free sampling-
based [34] and gradient-based [17] methods, to quickly find counterexamples in-
dicating property violation. Second, NeuralSAT preprocesses and applies heuris-
tics that automatically select appropriate abstractions and algorithms based on
input network structures and properties. For example, NeuralSAT focuses on
splitting the input ranges for networks with low input dimension and splitting
neurons for networks with many inputs (which are the majority of real-world
and VNN-COMP DNNs).

What’s New? In its latest version (after VNN-COMP’24), NeuralSAT has
two new optimizations. First, for networks with large outputs (e.g., “Cifar100”
networks with 100 outputs that often cause timeout due to heavy memory usage),
NeuralSAT processes multiple output constraints at once and adjusts abstraction
to compute approximations that are less precise, but consume significantly less
memory. Second, for networks with small ReLU-based FC layers, NeuralSAT
attempts to solve the problem using MILP solving directly before using the more
expensive DPLL(T) search. §4 shows the improvements of these optimizations.

Commodity Hardware NeuralSAT heavily leverages the power of modern hard-
ware, including multi-core CPUs and GPUs. The parallel search in NeuralSAT
uses multi-threading, allowing multiple search subspaces to be processed in par-
allel. A large part of the theory solver in NeuralSAT is implemented to run
on GPUs, which significantly speeds up the computation of neuron bounds.
While leveraging hardware is common in DNN verification, the implementation
is highly specific to the tool and requires careful engineering to achieve high
performance. In VNN-COMP’235, NeuralSAT was one of the fastest tools, often
outperforming other top competitors.

Well-Tested NeuralSAT has been rigorously tested on a wide-range of bench-
marks, including those in VNN-COMPs and many more. In fact, the bench-
marks in VNN-COMP are often easy for NeuralSAT, and we actively seek out
more challenging benchmarks to test the tool’s capabilities, through our own
benchmark generation research [30,29] and collaborations with other researchers
and industry partners.

Active Development NeuralSAT is actively maintained with frequent updates. If
the tool does not support a specific problem or benchmark, users are encouraged
to open an issue on the project’s GitHub page, and the team will strive to provide
assistance (though in practice people often send emails instead of open Github
issues). While the development version of NeuralSAT is quite usable, we aim to
release stable versions approximately every 6 months.
5 VNN-COMP’24 no longer measures verification runtime and instead uses timeout.
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# Tool Score

1 αβ-CROWN 1200.0
2 NeuralSAT 1113.1
3 PyRAT 1000.8
4 Marabou 751.0
5 nnenum 572.5
6 NNV 530.0
7 CORA 439.5
8 NeVer2 262.3
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Fig. 2: VNN-COMP’24 updated results [5].

Extensibility As mentioned, NeuralSAT has many optimizations, and their ad-
dition was facilitated by the use of DPLL(T). The DPLL(T) framework in
NeuralSAT is modular and extensible, consisting of a small core search algo-
rithm and allows users to: add new decision or restart heuristics for DPLL, add
new adversarial attacks in preprocessing, or extend the T-solver with additional
abstraction or optimizations for DNN analysis. For example, the neuron stabi-
lization optimization described in §2.2 is an independent function with fewer
than 100 SLOCs and integrated via a hook method call into the core DPLL
search. Similarly, heuristics are implemented as independent functions and can
be easily replaced or extended (e.g., in current implementation decisions and
restarts are less than 50 SLOC). NeuralSAT also uses the Gurobi LP solver as a
black box and thus can switch to different solvers, e.g, Xpress [10], dReal [8].

4 Evaluation

4.1 VNN-COMP’24 Results

Fig. 2 summarizes the results of VNN-COMP’24 [5]. The table in the Fig. corre-
sponds to Tab. 35 in Apdx. B of [5] and presents the overall scores and rankings
of the tools. The cactus plot corresponds Fig. 29 in Apdx. B of [5] and shows
tool performance on all benchmark instances. In summary, NeuralSAT24 ranks
2nd overall, behind αβ-CROWN and ahead of PyRAT.

4.2 New Results

We present the results of the latest version of NeuralSAT. We also compare it
with NeuralSAT24 and the latest version of αβ-CROWN6. As mentioned in §3, the
main updates are better handling of networks with large outputs and using MILP
solving. We also compare NeuralSAT with αβ-CROWN’s default configuration,
αβ-CROWNdefault, to show that NeuralSAT is competitive without any parameter
tuning.
6 https://github.com/Verified-Intelligence/alpha-beta-CROWN_vnncomp2024/

commit/201f7401b3d8dbaddeda179939a8dc1615f8214a

https://github.com/Verified-Intelligence/alpha-beta-CROWN_vnncomp2024/commit/201f7401b3d8dbaddeda179939a8dc1615f8214a
https://github.com/Verified-Intelligence/alpha-beta-CROWN_vnncomp2024/commit/201f7401b3d8dbaddeda179939a8dc1615f8214a
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Setup We reuse benchmarks and scripts for tool installation, execution, and
scoring from VNN-COMP’24 [5]. In total there are 340 networks (ranging from
0.2K to 68M parameters) and 2058 properties. For, αβ-CROWNdefault, we run the
script provided for αβ-CROWN without a specific configuration (YAML) file and
therefore uses its default settings. Details on the benchmarks and scoring system
are available in [5] and Github repo7.

Our experiments were run on a Linux machine with an AMD Threadrip-
per 64-core 4.2 GHz CPU, 128 GB RAM, and an NVIDIA GeForce RTX 4090
GPU with 24 GB VRAM. Because VNN-COMP’24 used Amazon AWS instances
which are different than our machine, we experimented with timeouts and settled
on 500 seconds per instance which allowed the verifiers to achieve similar scoring
performance as in VNN-COMP’24. All considered tools leverage multiprocessing
and GPU processing.

Results Tab. 2 shows the results. We report the Rank (#) and % is the percent-
age of solved problems over all problem instances of the corresponding bench-
mark. The last two columns break down the number of problems each veri-
fier was able to verify and falsify. For example, for ACAS Xu, all tools other
than αβ-CROWNdefault were able to verify all 186 problems (139 + 47), and
αβ-CROWNdefault was only able to solve 113 problems (78 + 35), which is 60.8%
of the total problems.

Overall, αβ-CROWN ranks 1st, followed closely by NeuralSAT in 2nd, NeuralSAT24
in 3rd, and αβ-CROWNdefault last. For NeuralSAT and αβ-CROWN, the results are
very close, with NeuralSAT verifying two fewer problems than αβ-CROWN (1296
vs. 1298) and falsifying one fewer problem (981 vs. 982). NeuralSAT, with two
new optimizations mentioned in §3, has similar performance on most benchmarks
and outperforms NeuralSAT24 on the remaining ones, with the most significant
improvements in “Cifar100” and “Tiny ImageNet” (due to large output optimiza-
tion) and “Safe NLP” (due to MILP solving).

The results show a significant performance disparity between αβ-CROWNdefault
and αβ-CROWN, with the latter having fine-tuned 10 parameters, on average, to
optimize its performance for different benchmarks8. In contrast, NeuralSAT made
no parameter adjustment for any benchmarks, highlighting its ease of use and
potential for better performance in unseen benchmarks.

5 Related Work

The literature on DNN verification is rich and rapidly evolving (cf. [26,16]). Here
we focus on tools competing in VNN-COMP’24 [5] because they are typically
the state of the art and combine multiple effective DNN verification techniques.
7 https://github.com/ChristopherBrix/vnncomp2024_benchmarks
8 https://github.com/Verified-Intelligence/alpha-beta-CROWN_vnncomp2024/

blob/master/complete_verifier/exp_configs/vnncomp24/ partially consists of
VNN-COMP’24 runscripts of αβ-CROWN, which use different configurations (in
yaml) on different benchmarks.

https://github.com/ChristopherBrix/vnncomp2024_benchmarks
https://github.com/Verified-Intelligence/alpha-beta-CROWN_vnncomp2024/blob/master/complete_verifier/exp_configs/vnncomp24/
https://github.com/Verified-Intelligence/alpha-beta-CROWN_vnncomp2024/blob/master/complete_verifier/exp_configs/vnncomp24/
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r
Tab. 2: Results over VNN-COMP’24 Benchmarks

Benchmark # Tool % Verify Falsify

ACAS Xu
1 αβ-CROWN 100.0% 139 47
1 NeuralSAT 100.0% 139 47
1 NeuralSAT24 100.0% 139 47
4 αβ-CROWNdefault 60.8% 78 35

Cgan
1 αβ-CROWN 100.0% 8 13
1 NeuralSAT 100.0% 8 13
1 NeuralSAT24 100.0% 8 13
4 αβ-CROWNdefault 33.3% 0 7

Cifar100
1 αβ-CROWN 77.5% 123 32
2 NeuralSAT 76.5% 122 31
3 αβ-CROWNdefault 71.0% 110 32
4 NeuralSAT24 64.5% 98 31

Collins Rul CNN
1 αβ-CROWN 100.0% 30 32
1 αβ-CROWNdefault 100.0% 30 32
1 NeuralSAT 100.0% 30 32
1 NeuralSAT24 100.0% 30 32

Cora
1 αβ-CROWN 43.9% 24 134
1 αβ-CROWNdefault 43.9% 24 134
1 NeuralSAT 43.9% 24 134
1 NeuralSAT24 43.9% 24 134

Dist Shift
1 αβ-CROWN 100.0% 64 8
1 NeuralSAT 100.0% 64 8
3 NeuralSAT24 98.6% 63 8
4 αβ-CROWNdefault 94.4% 60 8

Linearize NN
1 αβ-CROWN 100.0% 59 1
1 NeuralSAT 100.0% 59 1
1 NeuralSAT24 100.0% 59 1
4 αβ-CROWNdefault 68.3% 40 1

Meta Room
1 αβ-CROWN 98.0% 91 7
1 NeuralSAT 98.0% 91 7
1 NeuralSAT24 98.0% 91 7
4 αβ-CROWNdefault 0.0% 0 0

Nn4sys
1 αβ-CROWN 100.0% 194 0
1 NeuralSAT 100.0% 194 0
1 NeuralSAT24 100.0% 194 0
4 αβ-CROWNdefault 4.1% 8 0

Safe NLP
1 αβ-CROWN 98.1% 411 648
1 NeuralSAT 98.1% 411 648
3 αβ-CROWNdefault 96.9% 401 646
4 NeuralSAT24 94.3% 378 640

Tiny ImageNet
1 αβ-CROWN 91.5% 140 43
2 NeuralSAT 91.0% 139 43
3 αβ-CROWNdefault 89.5% 136 43
4 NeuralSAT24 72.5% 102 43

TLL Verify Bench
1 αβ-CROWN 100.0% 15 17
1 NeuralSAT 100.0% 15 17
1 NeuralSAT24 100.0% 15 17
4 αβ-CROWNdefault 65.6% 5 16

Overall
1 αβ-CROWN 88.8% 1298 982
2 NeuralSAT 88.7% 1296 981
3 NeuralSAT24 84.7% 1201 973
4 αβ-CROWNdefault 71.9% 892 954
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Several tools, including NeuralSAT, belong to the Branch-and-Bound (BaB)
approach, which refines bounds computed for subproblems and then splits, or
branches, them into subproblems that are solved separately. αβ-CROWN combines
GPU-accelerated linear bound propagation with advanced BaB techniques, such
as cutting planes and neuron splitting, to scale to large networks. Marabou [28]
(the successor of the popular Reluplex work [14]) encodes verification as con-
straint problems and uses parallelized split-and-conquer techniques for efficiency.
nnenum [3] uses hidden BaB with star sets and several types of zonotope abstrac-
tions and focuses strictly on ReLU networks.

Other tools use reachability analysis, which overapproximates reachable states
to verify properties. CORA [1] employs zonotopes for non-convex enclosures for
open-loop and closed-loop verification in control systems. NeVer2 [7] focuses on
ReLU-based feedforward networks by using an abstraction-refinement algorithm
with symbolic bounds propagation. PyRAT [19] uses abstract interpretation with
many domains including intervals, zonotopes, and polyhedra to compute sound
overapproximations of reachable states to verify safe and robustness properties.
NNV [25] focuses on verifying network-based control systems by integrating the
star-set domain [24] with iteratively refinement for precise reachability analysis.

NeuralSAT achieves BaB through its DPLL(T) framework, which provides
a strong algorithmic foundation and the flexibility to explore new heuristics
and optimizations. NeuralSAT also delivers competitive performance out-of-the-
box–an advantage over tools that require significant parameter tuning for good
performance.

6 Conclusion and Future Work

NeuralSAT has quickly evolved into a leading performer in DNN verification,
achieving similar performance to established competitors like αβ-CROWN. By
adopting modular and extensible designs, parallel DPLL(T) search, and ad-
vanced optimizations, NeuralSAT performs competitively across a diverse set
of benchmarks, demonstrating its robustness and scalability. Its out-of-the-box
usability, combined with its potential for further optimization and customization,
make it an attractive choice for both researchers and practitioners.

Maintaining competitiveness in the world of rapid advancements requires
continuous innovation in both algorithmic research and engineering advance-
ments. We are exploring both algorithmic research, such as compositional rea-
soning [18,22], which decomposes large verification to more manageable sub-
problems, and decision heuristics from DPLL, such as VMTF (Variable Move-
to-Front) [4], which prioritize variables involved in learned conflict clauses to
improve search efficiency, and engineering improvements, such as enhancing par-
allelization and supporting multi-GPU hardware acceleration.
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