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Verifying Structural Robustness of Deep Neural Network

ANONYMOUS AUTHOR(S)

Neural network verification has emerged as a useful technique for improving the reliability of deep learning
systems. Current verification approaches primarily focus on local robustness, where perturbations are applied
independently to each input element. Despite its common use, local robustness does not capture perturbations
that exhibit coordinated relationships between input elements. Such perturbations arise from systematic
transformations or filtering operations that preserve structural characteristics of the data. These perturbations,
which we call “structural robustness”, represent a significant gap in existing verification capabilities.

This work focuses on structural robustness verification by formalizing two important classes of structured
perturbations: linear position-invariant and linear position-varying. Those perturbations allow input elements
to be modified in coordinated ways while preserving essential data structure. The main challenge is that
structural perturbations cannot be directly expressed using standard interval-based specification formats that
existing verification tools typically support.

To address this limitation, we introduce VeriS, a technique that reformulates structural robustness into
standard local robustness problems by creating specialized subnetworks that encode perturbation behavior
and integrate them with the original network architecture. VeriS enables verification across continuous spaces
defined by structural robustness specifications while maintaining compatibility with existing verification tools.
VeriS also introduces optimizations that significantly enhance verification performance such as converting
complex operations into standard representations.

We implement and evaluate VeriS on benchmarks involving neural networks across three domains: image
classification, audio processing, and healthcare applications. Our evaluation, which encompasses 5508 verifica-
tion problems, demonstrates that VeriS successfully verifies 78% of structural robustness specifications when
integrated with state-of-the-art verification tools. These results show that VeriS enables the verification of
complex structural perturbations that were previously beyond the reach of existing neural network verification.

Additional Key Words and Phrases: neural network verification, structural robustness, local robustness
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1 Introduction

Deep Neural Networks (DNNs) are increasingly being employed as components of mission-critical
systems across a range of application domains, including autonomous driving, medicine, and
infrastructure monitoring. As with traditional software, testing DNNs using rigorous coverage
criteria [10, 14, 24, 30, 33, 47, 56, 68] is necessary but not sufficient for critical deployments. To
provide further assurance, researchers have developed a wide range of techniques for verifying
that DNNs satisfy required properties. In recent years, many dozens of DNN verifiers have been
reported in the literature and a yearly competition has documented advances in the capabilities of
state-of-the-art DNN verifiers [2, 5, 6].

Among desired properties to evade adversarial attacks, robustness [3, 8, 39, 48] is a fundamental
property for DNNs that ensures consistent behavior when inputs undergo perturbations. Local
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2 Anon.

robustness (LR) is a common formulation that requires small, arbitrary changes to individual input
elements, e.g., small noises added to each pixel of an image, do not affect the DNNpredictions [25, 29].
To check that a neural network satisfies LR, existing analyses [1, 8, 18, 21, 28, 29, 34, 38, 39, 57, 59]
define and encode LR specification using interval constraints that bound the perturbation added
to each input, e.g., 𝑥 = 𝑥 + 𝛿 where 𝛿 is a small noise bounded by an interval constraint. LR is
well-studied and can be solved efficiently by modern DNN verifiers [2, 6, 15, 16, 64, 65], and LR
benchmarks, e.g., image classification, made up a large portion of DNN verification evaluations [2,
5, 6].
Despite its simplicity and well-supported by existing work, LR does not capture real-world

perturbations that create interdependencies between input elements and require more complex
modifications than just adding noise to individual dimensions. For example, in image processing,
common transformations include spatial translation and scaling [49], which systematically shift or
resize pixel values rather than adding independent noise to each pixel. Scaling transformations
in images uniformly adjust pixel coordinates, creating a zoomed view while preserving the se-
mantic information, which should not affect a DNN’s classification. Likewise, in audio processing,
time-warping [11, 66] modifies playback speed without altering the essential acoustic content,
representing natural variations that are expected to maintain the DNN’s prediction.
In this work, we study robustness properties with two such types of perturbations that are

common in real-world applications: linear position-invariant (LPI), which applies the same trans-
formation across all input positions, e.g., filtering in audio processing and convolution in image
processing [49], and linear position-varying (LPV), which applies different transformations at differ-
ent input positions, e.g., time-warping in audio processing and spatial transformations in image
processing [11, 66]. We call them structural robustness (SR) properties, since they capture how
input data can change structurally while preserving input information. We introduce and formally
define SR properties, which generalize LR properties, by using a more expressive form that allows
a wide range of perturbations. Specifically, instead of adding small noise 𝛿 to each input element
independently as in LR, we define SR properties with a noise transformation matrix 𝑃 that captures
the desired perturbation operations such as translation, scaling, time-warping, and filtering. This
formulation allows analysis of new applications that require SR properties, e.g., classification with
spatial transformations and temporal distortions.
Next, because SR properties are more complex (e.g., the transformation matrix involves non-

linear operations) and not supported natively by DNN verification techniques, we introduce a
reformulation approach, VeriS, that reduces SR verification problems into specialized LR ones. This
process involves representing the structural perturbation as a new subnetwork that is prepended to
the original network, whereas structural perturbation strength is encoded as interval constraints.
The resulting network can then be verified using existing LR verification techniques.

Finally, for many SR transformations, the combined networks are larger and contain non-linear
activation functions that existing verifiers do not handle well. Thus, VeriS introduces optimizations
to improve the efficiency of verifying the new networks. For example, we show how to encode new
activation functions, e.g., absolute operations that are not commonly used in DNNs, using ReLU
operations that are well-supported by existing verifiers. VeriS also includes optimizations that
reduce the size of the new network, e.g., by merging layers and removing redundant operations.
We implement VeriS and evaluate it on a set of 5508 SR problems including neural networks

from three different domains (image classification, voice classification, and health monitoring). Our
results show that through the reformulation and optimizations from VeriS enable existing DNN
verifiers to solve 4289/5508 (78%) SR problems within a 60s timeout, while without VeriS none of
the SR problems can be directly solved by existing verifiers.

The key contributions of the paper lie in:
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Verifying Structural Robustness of Deep Neural Network 3

• We introduce and formalize LPI and LPV SR properties, which are more expressive than LR
and allow a wide range of perturbations. This enables new applications such as signal and
audio processing and richer types of image classification that require SR properties.
• We show how to encode SR properties as LR properties, enabling existing verifiers to verify
the considered SR properties. The main idea is to create a subnetwork that encodes the
structural perturbation and integrates it into the original network.
• We introduce optimizations including layer merging and activation function encoding that
allows existing verifiers to solve these new LR problems efficiently.
• We implement VeriS and evaluate it on 5508 SR problems from three different domains
(audio, health, and image classification). We show that existing verifiers, with the help of
VeriS, can effectively solve SR problems that were previously not considered and solved.

2 From Local to Structural Robustness

DNN Verification. Given a DNN 𝑁 and a property (or specification) 𝜙 , the DNN verification
problem asks if 𝜙 is a valid property of 𝑁 . Typically, 𝜙 is a formula of the form 𝜙𝑖𝑛 ⇒ 𝜙𝑜𝑢𝑡 , where
𝜙𝑖𝑛 is a property over the inputs of 𝑁 and 𝜙𝑜𝑢𝑡 is a property over the outputs of 𝑁 .

Modern DNN techniques [1, 15, 16, 19, 59, 62, 64, 65] treat this verification problem as a satisfia-
bility problem by encoding the DNN 𝑁 and the property 𝜙 as a logical formula:

𝑁 ∧ 𝜙𝑖𝑛 ∧ ¬𝜙𝑜𝑢𝑡 (1)

If Eq. 1 is unsatisfiable (UNSAT), the considered property holds. Otherwise, it is satisfiable (SAT)
and a counterexample exists that disproves the property.

2.1 Local Robustness (LR)

Existing DNN analyses mainly focus on LR properties1, defined as follows:

Definition 1 (Local Robustness). Given a neural network 𝑁 : R𝑑 → R𝑐 and an input 𝑥 ∈ R𝑑 ,
it is locally 𝜖-robust at 𝑥 with respect to norm ∥ · ∥𝑝 if:

∀𝑥, ∥𝑥 − 𝑥 ∥𝑝 ≤ 𝜖 =⇒ 𝑁 (𝑥) = 𝑁 (𝑥).

where 𝑑 is the input dimension, 𝑐 is the number of outputs, and ∥𝑥 − 𝑥 ∥𝑝 ≤ 𝜖 indicates that the
difference between the two points is within a certain (small) threshold 𝜖 .

This formulation treats each input dimension independently, allowing arbitrary element-wise
modifications as long as the overall perturbation magnitude remains bounded. Typically, the
perturbation space is defined by directly varying the input signal 𝑥 within an ℓ∞-ball:

𝑥 = 𝑥 + 𝛿 where ∥𝛿 ∥∞ ≤ 𝜖

Note that DNN verification mainly focuses on LR properties of ℓ∞ norm [2, 6, 15, 16, 25, 29, 64, 65].
More specifically, these work represent LR specifications using interval constraints, in which each
input dimension of DNN is bounded by a lower bound and upper bound. This approach is simple
and equivalent to ℓ∞ norm (𝑝 = ∞) in Def. 1.

1The literature also mentions about DNNs global robustness, which requires that network maintain a separation of width at
least 𝜖 (in input space) between any pair of regions that are assigned different prediction labels [31]. In other words, LR
specifies space around a specific point of interest, while global robustness specifies space for every input. However, global
robustness is often considered impractical as it is computationally intractable for continuous input spaces
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4 Anon.

Example. Assume we want to verify the DNN in Fig. 2a is locally 𝜖-robust at 𝑥 = [1.0, 2.0, 3.0, 4.0]
with respect to ℓ∞ norm with 𝜖 = 0.5. Then the interval constraints are:

∀𝑥1 ∈ [0.5, 1.5], 𝑥2 ∈ [1.5, 2.5], 𝑥3 ∈ [2.5, 3.5], 𝑥4 ∈ [3.5, 4.5] =⇒ 𝑁 (𝑥) = 𝑁 (𝑥)
where 𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4] is the perturbed input. This property ensures each input dimension is
changed by at most 0.5 from its original value (in other words, perturbed inputs are within a ℓ∞-ball
of radius 0.5 around the center 𝑥 ) will produce the same output as the original input 𝑥 .

2.2 Structural Robustness (SR)

LR properties do not capture perturbations that involve more complex interactions among input
elements. We thus introduce structural robustness (SR) properties that generalizes LR and considers
perturbations that affect the input in a structured manner.

In our observation from the literature [36, 40, 49], SR properties can be broadly categorized into
two classes: linear position-invariant (LPI) and linear position-varying (LPV) perturbations. LPI
specifications model systematic effects that apply uniformly across the entire input sequence, such
as global filtering operations or environmental factors that consistently affect all data elements.
Examples include lowpass and highpass filtering for audio signal processing [36] and blurring and
sharpening for image processing [49]. LPV specifications capture localized structural distortions
that vary depending on the position within the input sequence, such as timing variations or
position-dependent transformations that affect different parts of the data differently. Examples
include time-warping for time series data such as electrocardiogram (ECG) and audio [41, 50].

We formally define these two classes as follows:

Definition 2 (Linear Position-Invariant Perturbation). Given an input 𝑥 ∈ R𝑑 , a linear
position-invariant (LPI) perturbation, characterized by a matrix 𝑃 ∈ R𝑘 where 𝑘 ≤ 𝑑 , produces a
perturbed input 𝑥 ∈ R𝑑 through a convolution operation (∗):

𝑥 = 𝑃 ∗ 𝑥

Example. Assume we want to perturb 𝑥 = [1.0, 2.0, 3.0, 4.0] following LPI perturbation using
Echo kernel 𝑃 = [1.0, 0.0, 0.5]. The perturbed input 𝑥 can be computed as convolution of 𝑃 and 𝑥 :

𝑥 = [1.0, 0.0, 0.5]︸         ︷︷         ︸
𝑃

∗ [1.0, 2.0, 3.0, 4.0]︸               ︷︷               ︸
𝑥

= [1.0, 2.5, 4.0, 3.0]

The input 𝑥 is padded with 0.0 to the left and right to make output length of 𝑥 is the same as 𝑥 .

Definition 3 (Linear Position-Varying Perturbation). Given an input 𝑥 ∈ R𝑑 , a linear
position-varying (LPV) perturbation, characterized by a matrix 𝑃 ∈ R𝑑×𝑑 where each row of 𝑃 adds
up to 1, produces a perturbed input 𝑥 ∈ R𝑑 through a linear operation:

𝑥 = 𝑃𝑥𝑇

Example. Assume we want to perturb 𝑥 = [1.0, 2.0, 3.0, 4.0] following LPV perturbation using
Sinusoidal offset 𝑐 = [0.0, 2.0, 0.0,−2.0]. The perturbed input 𝑥 can be computed as:

𝑥 =


1.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0
0.0 0.0 1.0 0.0
0.0 1.0 0.0 0.0

︸                      ︷︷                      ︸
𝑃


1.0
2.0
3.0
4.0

︸︷︷︸
𝑥𝑇

= [1.0, 4.0, 3.0, 2.0]𝑇

where the matrix 𝑃 is constructed from the offset 𝑐 as shown in Eq. 6.
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Fig. 1. Differences between LPI and LPV perturbations using different perturbation types.

Fig. 1, which are the same types of filters as shown in the examples above, illustrates the
differences between LPI and LPV used in signal processing. Fig. 1a shows lowpass and highpass
perturbations that can bemodeled using LPI perturbations, while Fig. 1b shows the LPV perturbation
with different types representing Gaussian and sinusoidal methods. The key distinction is that
LPI perturbations alter data characteristics (e.g., amplitude, shape, etc.) while LPV perturbations
capture dynamic structural distortions and preserve local data characteristics. Due to uniform
effects, LPI is often used in signal processing applications (because filters affect signals consistently)
and image processing applications (because transformations affect images uniformly), while LPV is
often used in time series analysis (because patterns vary locally).

Assumptions. For LPI, we assume 𝑃 is scaling proportionally to 𝑧 and for LPV, we assume 𝑐
is changing proportionally to 𝑧. In other words, the perturbation space represented by VeriS
formulation might not contain some patterns that values of 𝑃 (or 𝑐) varies arbitrarily. One solution
is to use more than one variable [𝑧1, 𝑧2, . . . , 𝑧𝑛] to control the values of 𝑃 separately. However, this
approach does not guarantee some constraints among values of 𝑃 (e.g., summing to 1) and might
return some spurious solutions as encountered in [37].

2.3 Challenges and Approach Overview

SR can capture more complex and realistic perturbations than LR, but verifying SR properties
presents two fundamental challenges that prevent the direct application of existing DNN verifiers.
We address them through a two-step process: (i) reformulating SR properties into LR ones and (ii)
optimizing the unique structure of the reformulated problems to make them more amenable to
existing verifiers.

2.3.1 Challenge 1: Reformulation. LR properties can be formulated using interval constraints to
represent the bounded ranges for additive noise 𝛿 and therefore are supported by existing DNN
verifiers. In contrast, SR creates interdependencies between input elements (e.g., summation of
each row of 𝑃 to 1) and cannot be represented by intervals, and therefore are not supported by any
existing verification tools.

To address this challenge, VeriS reformulates SR specifications in two steps (i) creating a pertur-
bation network and (ii) integrating it into the original network. From the given SR specification,
VeriS creates a new perturbation function 𝑃𝑧 that represents a series of linear and non-linear
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6 Anon.

functions. The operations in 𝑃𝑧 also vary with respect to a single variable 𝑧 ∈ [0, 1] that controls
how the perturbation is applied.

Next, VeriS represents 𝑃𝑧 as a perturbation network and prepend it into the original network to
create a new network 𝑁 ◦ 𝑃𝑧 to be verified. Fig. 2 shows an example of a DNN with 4 inputs and its
modified version with a prepended perturbation network 𝑃𝑧 and on input 𝑧 that controls how the
perturbation is applied.
Thus, VeriS transformed the original SR problem (𝑁, 𝑃𝑧) into an LR one (𝑁 ◦ 𝑃𝑧, 𝜙), where the

property 𝜙 is defined as:

𝜙 ≡ ∀𝑧 ∈ [0, 1] =⇒ (𝑁 ◦ 𝑃𝑧) (𝑧) = 𝑁 (𝑥) (2)

Thus, 𝜙 is an LR and asks whether the network 𝑁 ◦ 𝑃𝑧 produces the same classification result as
the original network 𝑁 on input 𝑥 for all possible perturbations done to 𝑥 as controlled by 𝑧.

2.3.2 Challenge 2: Optimizations. While the newly formed LR problem can now be run by existing
verifiers, it is quite unique and complex (e.g., with non-linear operations in the perturbation network
𝑃𝑧 ). Existing DNN verifiers was never designed for this kind of LR problem and in fact was not able
to solve any benchmark problem of this form (e.g., in §5.4).
To address this limitation, we develop two new optimization techniques that enhance the

verification process. First, VeriS combines multiplication and addition into a single FC layer to
simplify the perturbation subnetwork 𝑃𝑧 , making it easier to reason about. Second, VeriS transforms
absolute operations (e.g., |𝑥 |, which is not a standard activation function and thus verifiers, or
more specifically, abstraction domains used by verifiers, are not optimized to handle and become
imprecise over large network) into an equivalent standard ReLU activation that existing verifiers are
more comfortable with. These optimizations make the perturbation subnetwork 𝑃𝑧 more compatible
with existing DNN verifiers (e.g., all verifiers are optimized to support FC layer and ReLU natively).

2.4 Illustration Example

Consider an example where we have a simple network 𝑁 with 4 inputs and 2 outputs as shown
in Fig. 2a. We want to verify its SR on the input 𝑥 = [1.0, 2.0, 3.0, 4.0] when it is perturbed.
For illustration, we use a time-warping perturbation, a transformation often used in time series
based applications like signal processing and audio [36, 66] that shifts each input by an offset
and compresses or stretches the input sequence. Assume the perturbation is characterized by
an offset array 𝑐 = [0.2,−1.3, 0.4,−1.2]. For example, after the perturbation we might have 𝑥 =

[1.2, 0.7, 3.4, 2.8] if we apply the full offset. Of course, this is only one possible perturbed input,
and we want to verify 𝑁 is robust for all possible perturbed inputs that can be generated by this
time-warping perturbation.

Reformulation. VeriS converts the given SR problem into an LR one as follows. First, it represents
the perturbation as a small subnetwork 𝑃𝑧 , which can also be interpreted as a function, that takes a
single input 𝑧 ∈ [0, 1] to control how the perturbation is applied. For example, if 𝑧 = 0, then no
perturbation, and if 𝑧 = 1, then the full offset 𝑐 is applied. To construct 𝑃𝑧 , VeriS uses a generic
interpolation function𝜓 (𝑘) = max{0, 1 − |𝑘 |} [40, 49] to compute the weighted sum (𝜓 (𝑘) ensures
that the weights are between 0 and 1) and shifted the inputs using operations including additions
and multiplications (e.g., 1.0 + 0.2𝑧, 3.0 + 0.4𝑧), and absolute functions (e.g., |1 − 1.3𝑧 |). For this
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Fig. 2. A new network 𝑁 ◦ 𝑃𝑧 with 𝑥 = [1.0, 2.0, 3.0, 4.0] and 𝑐 = [0.2,−1.3, 0.4,−1.2].

example, the fully constructed 𝑃𝑧 is

𝑃𝑧 =


1.0 − 0.2𝑧 0.2𝑧 0.0 0.0

1.0 − |1.0 − 1.3𝑧 | |1.0 − 1.3𝑧 | 0.0 0.0
0.0 0.0 1.0 − 0.4𝑧 0.4𝑧
0.0 0.0 1.0 − |1.0 − 1.2𝑧 | |1.0 − 1.2𝑧 |

︸                                                                                    ︷︷                                                                                    ︸
𝑃


1.0
2.0
3.0
4.0

︸︷︷︸
𝑥𝑇

=


1.0 + 0.2𝑧

1.0 + |1.0 − 1.3𝑧 |
3.0 + 0.4𝑧

3.0 + |1.0 − 1.2𝑧 |


VeriS represents 𝑃𝑧 as a subnetwork parameterized by a single input 𝑧 and operations including

multiplications and additions represented as weights and biases, and absolute functions represented
as activation functions, as shown in Fig. 2b. The new problem is now LR as shown Eq. 2 which
checks if 𝑁 ◦𝑃𝑧 produces the same output as the original network 𝑁 on input 𝑥 for all perturbations
parameterized by 𝑧.

Optimizations. While existing DNN verifiers can now run the new LR problem, they could not
solve it because of the complexity of the subnetwork 𝑃𝑧 , e.g., absolutes are non-standard nonlinear
activation functions that are difficult to analyze. To address this challenge, VeriS applies two
optimizations to simplify 𝑃𝑧 architecture. VeriS first combines the multiplication and addition into
a single fully-connected (FC) layer (instead of multiple layers in the original 𝑃𝑧 subnetwork). For
example, VeriS simplifies the following equation into a single FC layer:

1.0 + 0.2𝑧
1.0 − 1.3𝑧
3.0 + 0.4𝑧
1.0 − 1.2𝑧

 = 𝑧
[
0.2 −1.3 0.4 −1.2

]𝑇︸                            ︷︷                            ︸
𝑊

+


1.0
1.0
3.0
1.0

︸︷︷︸
𝑏

= 𝐿𝑖𝑛𝑒𝑎𝑟𝑊,𝑏 (𝑧)

Next, VeriS converts the absolute function (e.g., |1 − 1.3𝑧 |) into a series of standard ReLU
activation functions, which are natively supported by existing verifiers.

|1 − 1.3𝑧 | = 𝑅𝑒𝐿𝑈 (1 − 1.3𝑧) + 𝑅𝑒𝐿𝑈 (−(1 − 1.3𝑧)) (3)

After these optimizations, we have a simpler perturbation subnetwork 𝑃𝑧 that consists of only
FC layers and ReLU activations, which are well-supported by existing verifiers. For the running
example, which originally was not solvable by existing verifiers, is now easily solved them (proven
valid by both the 𝛼𝛽-Crown [59, 64, 65] and by NeuralSat [15, 16] verifiers).

We describe the general VeriS algorithmic approach in the next section §3 and evaluate it in §5.
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Alg. 1: VeriS Verification Framework
input :DNN 𝑁 , input 𝑥 , structural robustness 𝑆𝑅 (𝑃 for LPI or 𝑐 for LPV), verifier 𝑉
output :Verification result: sat, unsat, or timeout
// Step 1: Construct perturbation subnetwork 𝑃𝑧

1 if 𝑆𝑅 ≡ LPI then // LPI perturbation subnetwork construction (§3.1)
2 𝑊 ← 𝑃 ∗ 𝑥 − 𝑥 ; // Construct weight matrix Eq. 5

3 𝑏 ← 𝑥 ; // Construct bias vector Eq. 5

4 𝑃𝑧 ← Linear𝑊,𝑏 ; // Perturbation subnetwork construction

5 else if 𝑆𝑅 ≡ LPV then // LPV perturbation subnetwork construction (§3.2)
6 𝜓 (𝑥) ← 𝑅𝑒𝐿𝑈 (1 − 𝑅𝑒𝐿𝑈 (𝑥) − 𝑅𝑒𝐿𝑈 (−𝑥)) ; // Convert operator optimization §3.3

7 𝑃𝑧 ← Linear𝑥,0 ◦𝜓 ◦ Sub𝑗 ◦ Linear𝑐,𝑖 ; // Perturbation subnetwork construction

// Step 2: Formulate verification problem

8 𝑀 ← 𝑁 ◦ 𝑃𝑧 ; // Construct perturbed network

9 𝜙 ← ∀(𝑧) ∈ [0, 1] : 𝑀 (𝑧) = 𝑁 (𝑥) ; // Formulate verification property

// Step 3: Verify the verification property 𝜙

10 return 𝑉 (𝜙) ; // Invoke oracle verifier 𝑉

3 The VeriS Approach

Alg. 1 presents the high-level workflow of VeriS’s verification approach, which transforms SR
verification problems into standard LR ones that existing tools can handle directly. The algorithm
takes as inputs the target DNN 𝑁 , an input 𝑥 , a SR specification (either LPI characterized by 𝑃
or LPV characterized by 𝑐), and an oracle verifier 𝑉 . The algorithm returns possible verification
outcomes: (1) solved (either sat meaning violation found or unsat meaning property verified), or
(2) unsolved (unknown as runtime limit exceeded or an error occurred such as out-of-memory or
implementation issue).
First, VeriS constructs a perturbation subnetwork 𝑃𝑧 that encodes the SR specification (line 1-

line 7). For LPI specifications, the VeriS computes weight𝑊 and bias 𝑏 from the perturbation
parameters and given input, then creates a single FC layer Linear𝑊,𝑏 that represents the desired
perturbation (line 4) as explained in §3.1. For LPV specifications, the VeriS constructs a multi-layer
subnetwork (e.g., FC and ReLU layers, see §3.2) that models the perturbation (line 7). This step also
employs several optimization techniques to further improve the verification performance (see §3.3).
Next, VeriS transforms the SR problem into an LR one by combining the original network 𝑁

with the perturbation subnetwork 𝑃𝑧 to create a perturbed network𝑀 ≡ 𝑁 ◦ 𝑃𝑧 (line 8), with one
single input 𝑧 that controls the perturbation. The problem 𝜙 now is an LR and specifies that for all
𝑧 ∈ [0, 1], the𝑀’s output must match the 𝑁 ’s output on the original input 𝑥 (line 9).

VeriS invokes the oracle verifier 𝑉 to solve the formulated problem 𝜙 (line 10). Note that VeriS
applies optimizations to simplify the networks being checked and make them compatible with
existing verification tools. Moreover, VeriS uses LR representation to represent SR specification,
reduces the number of input dimensions to 1, thus, making problems more manageable.

3.1 LPI Formulation

To model LPI perturbations, VeriS uses Def. 2 employs standard convolution operations to naturally
represent uniform transformations across input. This formulation ensures the same transformation
applies consistently across all positions.

To verify SR problem of different variants of noise matrix 𝑃 for LPI specification, VeriS converts
the convolution transformation to a perturbation subnetwork 𝑃𝑧 taking as input a single variable
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Fig. 3. LPI perturbation subnetwork construction.

𝑧 ∈ [0, 1]. The 𝑃𝑧 is constructed to satisfy two essential properties: when 𝑧 = 0, the transformation
reduces to the identity operation (no perturbation), andwhen 𝑧 = 1, it applies the target perturbation.
Formally, 𝑃𝑧 for LPI specification is formulated as:

𝑃𝑧 = 𝑧 · 𝑃 ∗ 𝑥 + (1 − 𝑧) · 𝑥 = 𝑧 · (𝑃 ∗ 𝑥 − 𝑥) + 𝑥 (4)

This linear interpolation between the original input 𝑥 and the fully perturbed input 𝑃 ∗ 𝑥 creates
smooth and valid variation across the perturbation space.
To integrate the 𝑃𝑧 into the original DNN being checked, VeriS leverages the fact that 𝑃 ∗ 𝑥

produces a fixed outcome given the input 𝑥 and the perturbation matrix 𝑃 being checked. The
perturbation subnetwork 𝑃𝑧 can then be transformed to a standard FC layer Linear𝑊,𝑏 with weight
matrix𝑊 and bias 𝑏 as follows:

𝑃𝑧 = 𝑧𝑊
𝑇 + 𝑏 = Linear𝑊,𝑏 (𝑧) (5)

where𝑊 = 𝑃 ∗ 𝑥 − 𝑥 and 𝑏 = 𝑥 .
Fig. 3 illustrates the construction of the 𝑃𝑧 . This formulation uses a FC layer, which are univer-

sally supported by all DNN verification tools as the most fundamental layer in DNNs. While the
underlying operations (multiplication and addition) appear simple, expressing them as a standard
linear layer ensures broad compatibility across verification frameworks, as not all tools support
standalone arithmetic operations.

3.2 LPV Formulation

Similar to LPI perturbations, VeriS uses Def. 3 to systematically model LPV perturbations, which
employs interpolation-based transformations that redistribute input values across neighboring
positions. VeriS can essentially model various types of LPV perturbations by constructing the
noise matrix 𝑃 using different interpolation𝜓 , where each specific perturbation type requires its
own mathematical characterization. As a concrete example, this work demonstrates the approach
using time-warping [11, 66], which has been widely used in practice [27, 36, 41, 50, 66, 67]. The
time-warping formulation constructs the noise matrix 𝑃 using two parameters: offset matrix 𝑐 and
interpolation function𝜓 . The offset matrix 𝑐 determines the offset weights of input elements, and
𝜓 determines the weight distribution between adjacent positions while ensuring weights remain
between 0 and 1.

VeriS uses a generic interpolation𝜓 (𝑘) = max{0, 1 − |𝑘 |} widely used in literature [40, 49] and
varies the offset 𝑐 by scaling it by 𝑧, denoted as 𝑐𝑧 = 𝑧 · 𝑐 . Formally, the noise matrix 𝑃 for LPV
specification is defined element-wise as:

𝑃 [𝑖, 𝑗] = 𝜓 (𝑖 + 𝑧 · 𝑐 [𝑖] − 𝑗) (6)
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Fig. 4. LPV perturbation subnetwork construction.

Intuitively, 𝑃 [𝑖, 𝑗] captures the weights of the neighboring positions 𝑗 to the perturbed position 𝑖 .
Moreover, with this construction, 𝑃 becomes the identity matrix when 𝑧 = 0, and target perturbation
matrix when 𝑧 = 1, thus ensuring the desired properties of the perturbation subnetwork 𝑃𝑧 .
For a given input 𝑥 and offset 𝑐 , the perturbation subnetwork 𝑃𝑧 for LPV specification is con-

structed through a sequence of operations as:

𝑃𝑧 = 𝑃𝑥
𝑇 = Mul𝑥 ◦𝜓 ◦ Sub𝑗 ◦ Add𝑖 ◦Mul𝑐 (𝑧) (7)

This operation sequence implements exactly Eq. 6 through a series of computational steps. Starting
with parameter 𝑧, the operations compute (𝑖 + 𝑧 · 𝑐 [𝑖] − 𝑗) for all pairs of indices 𝑖 and 𝑗 . The Mul𝑐
and Add𝑖 operations together compute (𝑖 + 𝑧 · 𝑐 [𝑖]) for each position 𝑖 . Then Sub𝑗 subtracts each 𝑗
to produce the full matrix of differences. Finally, 𝜓 converts these differences into interpolation
weights, and Mul𝑥 applies them to input 𝑥 . Fig. 4 illustrates in detail the construction of the
perturbation subnetwork 𝑃𝑧 .

Compare to LPI perturbations in Eq. 5, the LPV perturbation subnetwork in Eq. 9 is more complex
and involves more non-linear functions (e.g., absolute operation from𝜓 ) that are generally more
challenging for verification tools.

3.3 Optimization

VeriS also introduces several optimization techniques to further improve the verification perfor-
mance. The construction of the perturbation subnetwork 𝑃𝑧 involves several non-linear functions,
such as absolute function (| · |), which is generally not well-supported or not well-optimized
by existing verification tools (e.g., 𝛼𝛽-Crown [64] and NeuralSat [15] fail miserably). To cope
with this issue, VeriS introduces two optimization techniques to further improve the verification
performance. We give a detailed description of the optimization techniques below.

3.3.1 Merging Linear Operations. In Eq. 7 the perturbation subnetwork 𝑃𝑧 is built through a
sequence of operations as:

𝑃𝑧 = 𝑃𝑥
𝑇 =

Linear𝑥,0︷︸︸︷
Mul𝑥 ◦𝜓 ◦ Sub𝑗 ◦

Linear𝑐,𝑖︷         ︸︸         ︷
Add𝑖 ◦Mul𝑐 (𝑧)︸                            ︷︷                            ︸
𝑃

(8)
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𝑥

𝑦

𝑙𝑥 𝑢𝑥0

(a) 𝑦 = 𝑅𝑒𝐿𝑈 (𝑥)

𝑥

𝑦

𝑙𝑥 𝑢𝑥0

(b) 𝑦 = |𝑥 |

𝑥

𝑦

𝑙𝑥 𝑢𝑥0

(c) 𝑦 = 𝑅𝑒𝐿𝑈 (𝑥) + 𝑅𝑒𝐿𝑈 (−𝑥)

Fig. 5. Abstractions of ReLU and absolute function over 𝑥 ∈ [𝑙𝑥 , 𝑢𝑥 ].

The combination of scaling Mul𝑐 and addition Add𝑖 operations can be implemented as a standard
FC layer Linear𝑐,𝑖 (e.g., weight 𝑐 and bias 𝑖), while the Mul𝑥 can be converted to another FC layer
Linear𝑥,0 (e.g., weight 𝑥 and zero bias). Therefore, the perturbation subnetwork 𝑃𝑧 is converted to:

𝑃𝑧 = Linear𝑥,0 ◦𝜓 ◦ Sub𝑗 ◦ Linear𝑐,𝑖 (𝑧) (9)

These simplifications make the perturbation subnetwork more compatible with existing DNN
verifiers as FC is the most fundamental layer in DNNs reasoning. This also leverages the fact that
existing DNN verifiers analyze the network layer by layer, so Linear counts as one layer while
combining Mul and Add counts as 2, thus reducing the workload for verifiers.

3.3.2 Transforming Non-Linear Operations. The perturbation subnetwork 𝑃𝑧 in Eq. 9 involves a
non-linear interpolation function𝜓 , containing the absolute (| · |). The absolute function is not a
standard activation function and thus verifiers, or more specifically, abstraction domains used by
verifiers, are not optimized to handle and become imprecise over large networks.

Fig. 5 illustrates the polytope abstractions for different cases. Fig. 5a shows one typical method
to abstract ReLU [63] and Fig. 5b shows the abstraction for absolute function over 𝑥 ∈ [𝑙𝑥 , 𝑢𝑥 ],
demonstrating the imprecision of the abstraction for absolute function. Fig. 5c shows the abstraction
for combining 𝑅𝑒𝐿𝑈 (𝑥) and 𝑅𝑒𝐿𝑈 (−𝑥), which is equivalent to absolute function. Though it requires
two separate abstractions for ReLU, it is more accurate than the abstraction for absolute function.
Moreover, the abstraction of absolute function occurs early in the perturbed network (within the
perturbation subnetwork 𝑃𝑧 ), the imprecision accumulates through out the entire network, making
verifiers unable to solve the problem. More importantly, ReLU is common and well-optimized by
verifiers, therefore, it scales much better than absolute function.

To cope with this issue, VeriS transforms the absolute operator into a standard ReLU activation
function in a semantic-preserving manner. In particular, the absolute can be transformed into
|𝑥 | = 𝑅𝑒𝐿𝑈 (𝑥) + 𝑅𝑒𝐿𝑈 (−𝑥), and the interpolation function𝜓 in Eq. 9 can be transformed to:

𝜓 (𝑥) = max{0, 1 − |𝑥 |} = 𝑅𝑒𝐿𝑈 (1 − 𝑅𝑒𝐿𝑈 (𝑥) − 𝑅𝑒𝐿𝑈 (−𝑥)) (10)

This transformation ensures that the absolute operation is preserved while being making existing
DNN verifiers more comfortable with.

4 Experimental Design

We evaluate VeriS using the following research questions:
RQ1 (§5.1): How does VeriS perform on LPI and LPV perturbations?
RQ2 (§5.2): How does VeriS show robustness and vulnerability patterns?
RQ3 (§5.3): How compatible is VeriS with existing verification tools?
RQ4 (§5.4): How does optimization impact VeriS’s performance?
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Tab. 1. Benchmark instances.

Task Network Type Model SR Params Neurons Problems

KWS FC + CNN + Pooling + ReLU
M3 LPI 39K 41K 540

LPV 47K 48M 540

M5 LPI 52K 41K 540
LPV 60K 48M 540

ECG FC + CNN + Pooling + ReLU
M3 LPI 36K 27K 432

LPV 42K 22M 432

M5 LPI 49K 28K 432
LPV 54K 22M 432

Image
FC + CNN + ReLU Oval21 LPI 112K 3K 540

FC + ResNet + CNN + ReLU Sri_Resnet_A LPI 360K 11K 540
FC + ResNet + CNN + ReLU Cifar100 LPI 2.5M 55K 540

Total 7 5508

RQ5 (§5.5): How do structural perturbations compare to over-approximation approaches?

4.1 Verification Benchmarks

We use three domains to answer the RQs: (i) Keyword Spotting (KWS) for voice command recog-
nition [audio], (ii) ECG classification for cardiac rhythm monitoring [health], and (iii) image and
object recognition [image].

Network Datasets. Tab. 1 shows our networks, which comprise both domain-specific trained
models and standard benchmark networks used in the literature and competitions [5] For KWS
and ECG, we train M3 and M5 networks [12] which are deep CNNs for raw waveforms prediction
task. We vary the number of channels for convolution layers in these networks to 32 and 64.
We train KWS networks using the Google Speech Commands dataset [60], focusing on short
utterances (approximately 1 second) of common voice commands recorded under diverse acoustic
conditions. For ECG networks, we use the CardiacArrhythmia dataset [26], which provides cardiac
rhythm data across four distinct arrhythmia classes. For image classification, we use pre-trained
networks from recent VNN-COMPs [2, 5, 6]. These networks include Oval21, Sri_Resnet_A, and
Cifar100 architectures, providing diverse baselines for evaluating structural robustness verification
on computer vision tasks.

SR Specifications. Our benchmarks include both LPI and LPV perturbations across various per-
turbation levels and transformation configurations. For LPI specifications, we construct verification
instances by defining specific kernels, e.g., Echo, Low-pass, and High-pass filters for audio and
health domains, and Motion Blur kernels for image data. The perturbation space spans multiple
kernel sizes and 𝑧 ∈ {[0.0, 0.1], [0.0, 0.5], [0.0, 1.0]} to capture diverse modification patterns.

LPV perturbations employ varying position matrices 𝑐 defined by Linear, Sinusoidal, and Gauss-
ian coefficient patterns with three lower intensity levels 𝑧 ∈ {[0.0, 0.1], [0.0, 0.2], [0.0, 0.3]}. Due to
the increased computational complexity inherent in LPV specifications, we employ these moder-
ate perturbation intensities to ensure reasonable verification times while maintaining sufficient
robustness assessment coverage.
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Tab. 1 presents the benchmark statistics across all evaluation domains. The resulting benchmark
contains 5508 problems that span diverse networks of sizes from 3K to 48M neurons. Note that
we also list the number of neurons in addition to network parameters since the complexity of
verification often depends on the number of neurons.

4.2 Verifiers and Experimental Setup

DNN Verifiers. We experiment VeriS using 𝛼𝛽-Crown [64, 65] and NeuralSat [15, 16], the
two top performers in the recent VNN-COMP competitions. 𝛼𝛽-Crown has been consistently
the winner in VNN-COMPs while NeuralSat is a new comer that ranked 2nd back-to-back in
VNN-COMPs’24 [5] and ’25 [55].

State-of-the-art DNN verifiers typically employ Branch-and-Bound (BaB) algorithm [7], in which
“branch” refers to either neuron splitting or input splitting strategies to determine unsatisfiability or
counterexamples. The former splits the hidden neuron boundaries during verification and performs
abstraction to estimate bounds. The latter is often invoked on networks with low input dimensions,
splitting the input space (instead of neurons) into smaller subspaces. For 𝛼𝛽-Crown, we use two
different variants: neuron splitting 𝛼𝛽-Crown (N) and input splitting 𝛼𝛽-Crown (I). We use the
default setting of NeuralSat as it automatically determines and switches between neuron and
input splitting based on the input problem.

Experimental Envionment. Our experiments were run on a Linuxmachinewith an Intel(R) Xeon(R)
8-core 2.20GHz CPU, 32GB RAM, and an NVIDIA L4 GPU with 24 GB VRAM.

We borrowed the timeout setting from recent VNN-COMPs [5, 6] which allows up to 6 hours per
benchmark. For example, for the KWS M3 benchmark, the timeout can be up to 6× 3600/1080 = 20
seconds per instance. To compensate for differences in platforms (CPU and GPU) used for evaluation,
we settled down the timeout for each problem instance to 30 seconds for LPI instances and 60
seconds for LPV instances due to the increased complexity.

5 Results and Analysis

5.1 RQ1: VeriS performances on LPI and LPV perturbations

LPI Specifications. Tab. 2 presents the LPI verification performance of VeriS (used with the
NeuralSat tool) when applied to KWS/ECG tasks with three different filters (Lowpass, Echo, and
Highpass) and Image task under motion blur perturbations across three blur angles (0, 45, and 90
degrees). Overall, VeriS was able to solve 3342/3564 problems (94%).

Among the three tasks, ECG has a higher number of timeout instances (128 instances) compared
to KWS (29 instances) and Image (65 instances). This difference can be attributed to the distinct
characteristics of each data type. ECG signals are relatively unstructured, and filtering operations
significantly alter the signal characteristics, creating diverse perturbation spaces that are challenging
to verify. In contrast, KWS and image data havemore structured representations that are less affected
by filtering operations. Images maintain visual coherence after filtering, and audio signals remain
interpretable for keyword recognition even when perturbed. Finally, and unsurprisingly, when the
range of perturbation intensity 𝑧 increases, the search space increases (e.g., 𝑧 ∈ [0.0, 0.1]vs.[0.0, 1.0]),
and the number of solved instances decreases.

LPV Specifications. Tab. 3 shows that LPV problems are more challenging, with a total of 947/1944
(49%) solved instances in total. This performance degradation is expected since the networks of
LPV perturbations with prepended subnetworks have many more neurons (e.g., 48M) compared to
LPI ones (e.g., 41K). Still, despite the additional complexity for representing LPV characteristics,
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Tab. 2. Results on LPI (solved/unsolved)

Task z Lowpass Echo Highpass

ECG

[0.0, 0.1] 86/10 86/10 81/15

[0.0, 0.5] 78/18 79/17 75/21

[0.0, 1.0] 86/10 75/21 90/6

KWS

[0.0, 0.1] 120/0 120/0 120/0

[0.0, 0.5] 120/0 113/7 117/3

[0.0, 1.0] 116/4 108/12 117/3

Total 606/42 581/67 600/48

Task z Blur 0 Blur 45 Blur 90

Image

[0.0, 0.1] 180/0 180/0 180/0

[0.0, 0.5] 177/3 163/17 179/1

[0.0, 1.0] 162/18 172/8 162/18

Total 519/21 515/25 521/19

Tab. 3. Results on LPV (solved/unsolved)

Task z Linear Sinusoidal Gaussian

ECG

[0.0, 0.1] 85/11 73/23 82/14

[0.0, 0.2] 79/17 59/37 65/31

[0.0, 0.3] 66/30 23/73 35/61

KWS

[0.0, 0.1] 112/8 80/40 89/31

[0.0, 0.2] 41/79 16/104 23/97

[0.0, 0.3] 18/102 0/120 1/119

Total 401/247 251/397 295/353

Tab. 4. Results on LPI (unsat/sat/timeout)

Task 𝑧 ∈ [0.0, 0.1] 𝑧 ∈ [0.0, 0.5] 𝑧 ∈ [0.0, 1.0]

KWS 360/0/0 349/1/10 296/45/19

Image 523/17/0 374/145/21 202/294/44

ECG 248/5/35 153/79/56 77/174/37

Tab. 5. Results on LPV (unsat/sat/timeout)

Task 𝑧 ∈ [0.0, 0.1] 𝑧 ∈ [0.0, 0.2] 𝑧 ∈ [0.0, 0.3]

KWS 281/0/79 80/0/280 19/0/341

ECG 240/0/48 203/0/85 124/0/164

VeriS was able to solve 49% of LPV problems, which is significant given the novelty and difficulty
of LPV verification that was not possible before.

A closer look reveals that VeriS performs on Linear problems better than Sinusoidal and Gaussian
ones across all tasks and all perturbation configurations. This is due to Linear slightly perturbs
the input compared to Sinusoidal and Gaussian (see Fig. 1b). More specifically, Linear marginally
changes the input and creates a smaller perturbation space, in which the verification problems are
easier to solve. On the other hand, Sinusoidal and Gaussian drastically alter the input, resulting in
a larger perturbation space and thus their problems become harder to verify.

5.2 RQ2: Attacks and Patterns

The main goal of robustness verification is to show whether a network is robust or vulnerable to
(adversarial) attacks. The results in §5.1 give the overall performance of VeriS and here we look
closer into the results to determine vulnerable patterns and robustness of the networks. Recall
that DNN verification tools return either unsat (the property is verified), sat (a counterexample is
found, i.e., an adversarial example), or timeout (the tool is unable to solve the problem).

Tab. 4 presents the aggregated performance of LPI perturbations, revealing distinct vulnerability
patterns among the three tasks. As the perturbation intensity 𝑧 increases (i.e., more aggressive
perturbations), all tasks exhibit the expected trend where problems become easier to attack and
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Fig. 6. VeriS performances using different underlying verification tools.

harder to verify. KWS shows remarkable robustness, with no attack at 𝑧 ∈ [0.0, 0.1] and 𝑧 ∈ [0.0, 0.5]
and only 45 attacks at maximum intensity. This resilience can be attributed to the structured nature
of speech signals, where filtering operations preserve the essential acoustic features necessary for
keyword recognition. In contrast, ECG demonstrates high vulnerability, with the number of attacks
increasing from 5 to 174 instances as 𝑧 grows.

Tab. 5 shows the verification results on LPV perturbations, revealing a different pattern compared
to LPI results. Notably, no successful attacks were found across any task or perturbation intensity
level, indicating that LPV perturbations used preserve the structural integrity of the input signals.
However, as perturbation intensity increases, verification becomes increasingly challenging, with
the number of verified instances decreasing and timeout instances growing substantially. KWS
demonstrates particularly challenging verification characteristics, with verified instances dropping
substantially from 281 to 19 as perturbation intensity increases. This difficulty stems from the
longer input sequences in KWS tasks (4000) compared to ECG tasks (2714), which result in larger
networks (e.g., 48M vs 22M neurons) when combined with LPV subnetworks.

5.3 RQ3: Compatibility with Existing Verification Tools

One of the contributions of VeriS lies in enabling existing verification tools to handle SR problems
that were previously impossible to express or solve. Fig. 6 demonstrates this compatibility across
different verifier configurations, though with varying degrees of success depending on perturbation
complexity and verifier configurations.
For simpler perturbations like LPI, the transformation proves highly effective, with solved

percentages reaching 95% for Highpass and Lowpass, and 96% for Motion Blur 0 and 90. However,
more complex perturbations present significant challenges: while Linear LPV perturbations achieve
moderate verification rates (up to 61%), Gaussian and Sinusoidal patterns exhibit lower rates due to
their intrinsic computational complexity. Note that LPV problems are harder than LPI ones as LPV
networks are a lot larger as in Tab. 1. This performance variation reflects the inherent difficulty
of the underlying mathematical transformations rather than limitations in VeriS compatibility.
The key achievement is that existing verifiers can now solve these structured robustness problems,
whereas before VeriS such verification was impossible.

VeriS with backbone 𝛼𝛽-Crown worked well with input splitting (I) configuration, while neuron
splitting (N) struggles to solve many problems. This performance pattern aligns with VeriS’s
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Tab. 6. VeriS performances on LPV perturbations (solved/unsolved)

Variant z ∈ [0.0, 0.1] z ∈ [0.0, 0.2] z ∈ [0.0, 0.3]

Unoptimized 0/648 0/648 0/648

Optimized 521/127 283/365 143/505

formulation design, which reduces the effective input dimension to a single dimension 𝑧, making
input splitting strategies particularly effective for space exploration. Conversely, NeuralSat, which
automatically selects input or neuron splitting depending on the input problem, allowed VeriS to
solve many problems and maintain high performance across perturbation types and domains.

5.4 RQ4: Effectiveness of VeriS Optimizations

We compare the performance of VeriS when it is unoptimized (i.e., the original formulation of
the perturbation subnetwork 𝑃𝑧 as shown in Eq. 7) and optimized (e.g., compressing layers and
converting to ReLU as shown in Eq. 7). Note that we only show for LPV problems because the
perturbation subnetwork 𝑃𝑧 of LPI transformations already has just one linear layer (e.g., no
activation function).
Tab. 6 shows that optimization is critically necessary. All unoptimized problems fail to solve

within the time limit, with all 648 instances per perturbation level resulting in timeouts. In con-
trast, the optimized formulation successfully solves up to 80% (521 instances) at 𝑧 = 0.1, 44% (283
instances) at 𝑧 = 0.2, and 22% (143 instances) at 𝑧 = 0.3. Performance degrades when perturbation
strength increases because it creates a larger input space to explore, thus, problems are more
challenging to solve. More specifically, larger 𝑧 causes more imprecise abstraction, given that LPV
problems inherently has many neurons to abstract (e.g., 48M), making the problems unsolvable.
Additionally, as shown in Fig. 5, the abstraction of the absolute is less precise compared to the
one using ReLUs, and the imprecision propagates through the network resulting in being unsolv-
able. This substantial improvement highlights how the ReLU conversion optimization transforms
computationally intractable verification problems into solvable ones for existing verifiers.

5.5 RQ5: Comparison to Overapproximation Approaches

The abstraction-based approach in [37, 43] uses an over-approximation for verifying a subset of
LPI properties for image classifiers. They work by computing the worst-case of the SR pertur-
bation (overapproximated bounds of perturbed inputs) under some assumptions, e.g., assuming
convolutional perturbation with the kernel values are from [0, 1] and summing to 1 [37], or pixel-
level perturbations under some spatial smoothness constraints [43]. In addition, the considered
robustness is strictly less expressive than our LPI specification because it does not consider the
constraints among kernel elements and interactions between kernels and input, which are crucial
for structural perturbations.

To compare this approach with VeriS, we extend it to handle arbitrary kernels to capture VeriS’s
specifications with kernel bounds (𝐾𝑚𝑖𝑛, 𝐾𝑚𝑎𝑥 ), where 𝐾𝑚𝑖𝑛 < 0 < 𝐾𝑚𝑎𝑥 . It computes upper (𝑢𝑏)
and lower (𝑙𝑏) bounds for outputs by analyzing input neighborhoods of the kernel size, then
computes bounds as:

𝑢𝑏 = max{𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟, 0} × 𝐾𝑚𝑎𝑥 +min{𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟, 0} × 𝐾𝑚𝑖𝑛

𝑙𝑏 = min{𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟, 0} × 𝐾𝑚𝑎𝑥 +max{𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟, 0} × 𝐾𝑚𝑖𝑛

(11)
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Tab. 7. Performances of Overapproximation and VeriS approaches on SR perturbations (unsat/sat/timeout)

Method Lowpass Echo Highpass Blur 0 Blur 45 Blur 90

Overapproximation 0/630/18 0/648/0 0/648/0 0/540/0 0/540/0 0/540/0

VeriS 485/121/42 485/96/67 513/87/48 386/133/21 330/185/25 383/138/19

where max{𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟, 0} and min{𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟, 0} are the positive and negative parts of the neigh-
borhood, respectively. Intuitively, these equations perform a standard interval propagation for
the output by considering the worst-case of the perturbation. The verification problem of over-
approximation approach [37, 43] is then formulated as LR specification as:

∀𝑥 ∈ [𝑙𝑏,𝑢𝑏] =⇒ 𝑁 (𝑥) = 𝑁 (𝑥)
The results in Tab. 7 using LPI benchmarks, which are the primary focus of the abstraction-based

approach, show that the specifications generated by the over-approximation approach are all
violations, e.g., counterexamples are found for all problems. It is due to either large intervals of
inputs created by the over-approximation or the high-dimensional input space (e.g., the same as
the original input size). Even for the smallest perturbation strength of 0.1, none of these properties
could be verified for any networks considered in our evaluation. Note that those counterexamples
are considered as spurious counterexamples since they do not comply with SR constraints. In
contrast, VeriS was able to verify many properties across perturbation strengths and types. More
importantly, when VeriS found counterexamples, they are all valid counterexamples that satisfy
the SR constraints.

6 Threats to Validity

Regarding threats to internal validity, we built VeriS on top of established verification tools (𝛼𝛽-
Crown and NeuralSat) rather than implementing verification algorithms from scratch, thereby
leveraging extensively tested codebases. We validated our algorithm through unit testing, including
verification that identity transformations are produced when 𝑧 = 0 and that maximum perturbations
are produced when 𝑧 = 1 for both LPI and LPV specifications.

Regarding threats to the generalizability of our results, our evaluation focuses primarily on audio,
health and image domains. This domain selection was motivated by the natural applicability of
SR, but it may limit the application of our work to other domains where different types of SR are
relevant. Furthermore, our LPV evaluation was restricted to time-warping perturbations. Other LPV
perturbations such as complex spatial transformations may exhibit different verification behaviors.
Regarding threats to the validity of our metrics and experimental design, we used standard

verification metrics (number of solved instances, timeout, etc.) that are well-established in the
DNN verification literature [2, 5, 6, 55], ensuring comparability with prior work. However, these
metrics may not fully capture the practicality of SR verification compared to LR approaches. Our
comparison in §5.5 relies on constructing interval bounds that may not represent the tightest
possible approximation, potentially affecting the fairness of the comparison.

7 Related Work

LPI and LPV are common in many tasks and applications. LPV perturbations have been applied in
machine learning for sequence alignment [11] and pattern recognition [41, 50], such as managing
temporal variations in computer vision [66], audio processing for signal analysis [36], enhanc-
ing activity recognition through data augmentation [54], and improving accuracy in time series
classification by applying temporal modifications [27]. LPI perturbations have been extensively
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investigated in computer vision, by assessing DNN models against uniform corruptions [22, 32, 51]
and developing consistent training algorithms [61]. In audio processing, uniform acoustic charac-
teristics have been utilized for speaker verification [13] and device-consistent classification [23].
Despite being widely used in practice, the robustness of DNNs against LPI and LPV perturbations
has not been formally defined or verified, which is the focus of this work.
The work in [37, 43], as mentioned in §5.5, considered a limited subset of our defined LPI

properties, e.g., restricting convolution kernels to values in [0, 1] that sum to 1 [37], or pixel-
level spatial smoothness constraints [43]. Those approaches compute worst-case bounds given
the perturbation boundaries and formulate the problem as a standard LR verification task. While
enabling existing verification techniques, the resulting overapproximated spaces makes the work
ineffective in practice and unable to solve many problems (as illustrated in §5.5). Additionally,
they do not consider LPV properties, which represent an important class of perturbations and
is much more challenging to verify as shown in §5.1. VeriS addresses both complete LPI and
LPV properties through an approach that incorporates perturbation subnetworks directly into the
network architecture.
DNN verification work has primarily focused on LR specifications [5, 15, 19, 29, 65], in which

specifications are created by adding small perturbations to each input independently. However, no
prior work has focused specifically on verifying SR such as LPI and LPV specifications. To the best
of our knowledge, VeriS is the first framework to define and verify SR properties for DNNs.

Constraint-based solvers, like Planet [17] and Marabou [62], which encode the DNN verifica-
tion problem as an SMT formula, are potentially capable of encoding complex constraints in SR
properties, but they do not scale sufficiently to handle realistic DNNs [2, 6]. In contrast, abstraction-
based DNN verifiers overapproximate nonlinear computations (e.g., ReLU) of the network using
abstract domains, such as interval [58], zonotope [44], polytope [45, 63], starset/imagestar [52], to
scale verification. Such techniques and tools include Mn-Bab [19], ReluVal [58], Neurify [57],
Nnv [53], Nnenum [1], 𝛼𝛽-Crown [59, 64, 65], etc. This work leverages two state-of-the-art
abstraction-based DNN verifiers, 𝛼𝛽-Crown and NeuralSat, to solve SR problems efficiently.

8 Conclusion and Future Work

This work introduced SR properties that extend DNN verification beyond the limitations of tradi-
tional LR formulations. By defining LPI and LPV perturbation classes, we captured the structured
transformations that occur in many domains but cannot be expressed through interval constraints.
The key insight of our approach lies in transforming complex SR verification problems into LR
ones, allowing existing verification tools to be solve problems they could not previously handle.
VeriS enables the verification of structural robustness of DNNs against a wide range of per-

turbation types. VeriS provides a tractable, compatible with state-of-the-art DNN verifiers, and
optimized representation of the structured perturbations. It allows for an efficient verification of
DNNs for multi-domain tasks under diverse perturbations, with 94% and 49% of verified properties
for LPI and LPV, respectively.
Several promising directions emerge from this work. The perturbation subnetwork encoding

approach can be extended to capture additional classes of structured transformations beyond
convolution-based and time-warping perturbations, including elastic deformations [9], perspective
transformations [35], and domain-specific perturbations in robotics and autonomous systems such
as those in [20, 42]. Furthermore, the general principle of encoding complex verification properties as
neural network components suggests broader applications beyond robustness analysis, potentially
enabling verification of other structured properties such as fairness and domain adaptation [4, 46].
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9 Data Availability

VeriS is available at: https://anonymous.4open.science/r/VeriS/
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