g W N

© o N o

Verifying Structural Robustness of Deep Neural Network

ANONYMOUS AUTHOR(S)

Neural network verification has emerged as a useful technique for improving the reliability of deep learning
systems. Current verification approaches primarily focus on local robustness, where perturbations are applied
independently to each input element. Despite its common use, local robustness does not capture perturbations
that exhibit coordinated relationships between input elements. Such perturbations arise from systematic
transformations or filtering operations that preserve structural characteristics of the data. These perturbations,
which we call “structural robustness”, represent a significant gap in existing verification capabilities.

This work focuses on structural robustness verification by formalizing two important classes of structured
perturbations: linear position-invariant and linear position-varying. Those perturbations allow input elements
to be modified in coordinated ways while preserving essential data structure. The main challenge is that
structural perturbations cannot be directly expressed using standard interval-based specification formats that
existing verification tools typically support.

To address this limitation, we introduce VERIS, a technique that reformulates structural robustness into
standard local robustness problems by creating specialized subnetworks that encode perturbation behavior
and integrate them with the original network architecture. VERIS enables verification across continuous spaces
defined by structural robustness specifications while maintaining compatibility with existing verification tools.
VERIS also introduces optimizations that significantly enhance verification performance such as converting
complex operations into standard representations.

We implement and evaluate VERIS on benchmarks involving neural networks across three domains: image
classification, audio processing, and healthcare applications. Our evaluation, which encompasses 5508 verifica-
tion problems, demonstrates that VERIS successfully verifies 78% of structural robustness specifications when
integrated with state-of-the-art verification tools. These results show that VERIS enables the verification of
complex structural perturbations that were previously beyond the reach of existing neural network verification.

Additional Key Words and Phrases: neural network verification, structural robustness, local robustness

ACM Reference Format:
Anonymous Author(s). 2025. Verifying Structural Robustness of Deep Neural Network. 1, 1 (September 2025),
21 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction

Deep Neural Networks (DNNs) are increasingly being employed as components of mission-critical
systems across a range of application domains, including autonomous driving, medicine, and
infrastructure monitoring. As with traditional software, testing DNNs using rigorous coverage
criteria [10, 14, 24, 30, 33, 47, 56, 68] is necessary but not sufficient for critical deployments. To
provide further assurance, researchers have developed a wide range of techniques for verifying
that DNNs satisfy required properties. In recent years, many dozens of DNN verifiers have been
reported in the literature and a yearly competition has documented advances in the capabilities of
state-of-the-art DNN verifiers [2, 5, 6].

Among desired properties to evade adversarial attacks, robustness [3, 8, 39, 48] is a fundamental
property for DNNs that ensures consistent behavior when inputs undergo perturbations. Local

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM XXXX-XXXX/2025/9-ART

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: September 2025.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

98

2 Anon.

robustness (LR) is a common formulation that requires small, arbitrary changes to individual input
elements, e.g., small noises added to each pixel of an image, do not affect the DNN predictions [25, 29].
To check that a neural network satisfies LR, existing analyses [1, 8, 18, 21, 28, 29, 34, 38, 39, 57, 59]
define and encode LR specification using interval constraints that bound the perturbation added
to each input, e.g., ¥ = x + § where § is a small noise bounded by an interval constraint. LR is
well-studied and can be solved efficiently by modern DNN verifiers [2, 6, 15, 16, 64, 65], and LR
benchmarks, e.g., image classification, made up a large portion of DNN verification evaluations [2,
5, 6].

Despite its simplicity and well-supported by existing work, LR does not capture real-world
perturbations that create interdependencies between input elements and require more complex
modifications than just adding noise to individual dimensions. For example, in image processing,
common transformations include spatial translation and scaling [49], which systematically shift or
resize pixel values rather than adding independent noise to each pixel. Scaling transformations
in images uniformly adjust pixel coordinates, creating a zoomed view while preserving the se-
mantic information, which should not affect a DNN’s classification. Likewise, in audio processing,
time-warping [11, 66] modifies playback speed without altering the essential acoustic content,
representing natural variations that are expected to maintain the DNN’s prediction.

In this work, we study robustness properties with two such types of perturbations that are
common in real-world applications: linear position-invariant (LPI), which applies the same trans-
formation across all input positions, e.g., filtering in audio processing and convolution in image
processing [49], and linear position-varying (LPV), which applies different transformations at differ-
ent input positions, e.g., time-warping in audio processing and spatial transformations in image
processing [11, 66]. We call them structural robustness (SR) properties, since they capture how
input data can change structurally while preserving input information. We introduce and formally
define SR properties, which generalize LR properties, by using a more expressive form that allows
a wide range of perturbations. Specifically, instead of adding small noise § to each input element
independently as in LR, we define SR properties with a noise transformation matrix P that captures
the desired perturbation operations such as translation, scaling, time-warping, and filtering. This
formulation allows analysis of new applications that require SR properties, e.g., classification with
spatial transformations and temporal distortions.

Next, because SR properties are more complex (e.g., the transformation matrix involves non-
linear operations) and not supported natively by DNN verification techniques, we introduce a
reformulation approach, VERIS, that reduces SR verification problems into specialized LR ones. This
process involves representing the structural perturbation as a new subnetwork that is prepended to
the original network, whereas structural perturbation strength is encoded as interval constraints.
The resulting network can then be verified using existing LR verification techniques.

Finally, for many SR transformations, the combined networks are larger and contain non-linear
activation functions that existing verifiers do not handle well. Thus, VERIS introduces optimizations
to improve the efficiency of verifying the new networks. For example, we show how to encode new
activation functions, e.g., absolute operations that are not commonly used in DNNs, using ReLU
operations that are well-supported by existing verifiers. VERIS also includes optimizations that
reduce the size of the new network, e.g., by merging layers and removing redundant operations.

We implement VERIS and evaluate it on a set of 5508 SR problems including neural networks
from three different domains (image classification, voice classification, and health monitoring). Our
results show that through the reformulation and optimizations from VERIS enable existing DNN
verifiers to solve 4289/5508 (78%) SR problems within a 60s timeout, while without VERIS none of
the SR problems can be directly solved by existing verifiers.

The key contributions of the paper lie in:

, Vol. 1, No. 1, Article . Publication date: September 2025.

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

137
138
139
140
141
142
143
144
145
146
147

Verifying Structural Robustness of Deep Neural Network 3

e We introduce and formalize LPI and LPV SR properties, which are more expressive than LR
and allow a wide range of perturbations. This enables new applications such as signal and
audio processing and richer types of image classification that require SR properties.

e We show how to encode SR properties as LR properties, enabling existing verifiers to verify
the considered SR properties. The main idea is to create a subnetwork that encodes the
structural perturbation and integrates it into the original network.

e We introduce optimizations including layer merging and activation function encoding that
allows existing verifiers to solve these new LR problems efficiently.

e We implement VERIS and evaluate it on 5508 SR problems from three different domains
(audio, health, and image classification). We show that existing verifiers, with the help of
VERIS, can effectively solve SR problems that were previously not considered and solved.

2 From Local to Structural Robustness

DNN Verification. Given a DNN N and a property (or specification) ¢, the DNN verification
problem asks if ¢ is a valid property of N. Typically, ¢ is a formula of the form ¢;,, = ¢y, where
$in is a property over the inputs of N and ¢,y is a property over the outputs of N.

Modern DNN techniques [1, 15, 16, 19, 59, 62, 64, 65] treat this verification problem as a satisfia-
bility problem by encoding the DNN N and the property ¢ as a logical formula:

N A ¢in A =Pour (1)

If Eq. 1 is unsatisfiable (UNSAT), the considered property holds. Otherwise, it is satisfiable (SAT)
and a counterexample exists that disproves the property.

2.1 Local Robustness (LR)

Existing DNN analyses mainly focus on LR properties’, defined as follows:

DEFINITION 1 (LocAL ROBUSTNESS). Given a neural network N : R? — R® and an input x € RY,
it is locally e-robust at x with respect to norm || - ||, if:

VX, |lx—%|l, <e = N(x)=N(%).

where d is the input dimension, ¢ is the number of outputs, and ||x — x||, < € indicates that the
difference between the two points is within a certain (small) threshold e.

This formulation treats each input dimension independently, allowing arbitrary element-wise
modifications as long as the overall perturbation magnitude remains bounded. Typically, the
perturbation space is defined by directly varying the input signal x within an £,-ball:

Xx=x+6 where |[§]lc <€

Note that DNN verification mainly focuses on LR properties of £, norm [2, 6, 15, 16, 25, 29, 64, 65].
More specifically, these work represent LR specifications using interval constraints, in which each
input dimension of DNN is bounded by a lower bound and upper bound. This approach is simple
and equivalent to £, norm (p = co) in Def. 1.

IThe literature also mentions about DNNs global robustness, which requires that network maintain a separation of width at
least e (in input space) between any pair of regions that are assigned different prediction labels [31]. In other words, LR
specifies space around a specific point of interest, while global robustness specifies space for every input. However, global
robustness is often considered impractical as it is computationally intractable for continuous input spaces

, Vol. 1, No. 1, Article . Publication date: September 2025.

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

171
172
173
174
175
176
177
178
179

181
182
183
184

186
187
188
189
190
191
192
193
194
195
196

4 Anon.

Example. Assume we want to verify the DNN in Fig. 2a is locally e-robust at x = [1.0, 2.0, 3.0, 4.0]
with respect to £, norm with € = 0.5. Then the interval constraints are:

V& € [0.5,1.5], %, € [1.5,2.5],%3 € [2.5,3.5], %4 € [3.5,4.5] = N(x) = N(%)

where X = [X1, X3, X3, X4] is the perturbed input. This property ensures each input dimension is
changed by at most 0.5 from its original value (in other words, perturbed inputs are within a £,,-ball
of radius 0.5 around the center x) will produce the same output as the original input x.

2.2 Structural Robustness (SR)

LR properties do not capture perturbations that involve more complex interactions among input
elements. We thus introduce structural robustness (SR) properties that generalizes LR and considers
perturbations that affect the input in a structured manner.

In our observation from the literature [36, 40, 49], SR properties can be broadly categorized into
two classes: linear position-invariant (LPI) and linear position-varying (LPV) perturbations. LPI
specifications model systematic effects that apply uniformly across the entire input sequence, such
as global filtering operations or environmental factors that consistently affect all data elements.
Examples include lowpass and highpass filtering for audio signal processing [36] and blurring and
sharpening for image processing [49]. LPV specifications capture localized structural distortions
that vary depending on the position within the input sequence, such as timing variations or
position-dependent transformations that affect different parts of the data differently. Examples
include time-warping for time series data such as electrocardiogram (ECG) and audio [41, 50].

We formally define these two classes as follows:

DEFINITION 2 (LINEAR POSITION-INVARIANT PERTURBATION). Given an input x € R?, a linear
position-invariant (LPI) perturbation, characterized by a matrix P € RF where k < d, produces a
perturbed input X € R through a convolution operation (x):

XxX=Pxx
Example. Assume we want to perturb x = [1.0, 2.0, 3.0, 4.0] following LPI perturbation using
Echo kernel P = [1.0,0.0, 0.5]. The perturbed input x can be computed as convolution of P and x:
% = [1.0,0.0,0.5] * [1.0, 2.0, 3.0, 4.0] = [1.0,2.5,4.0,3.0]

P x
The input x is padded with 0.0 to the left and right to make output length of % is the same as x.

DEFINITION 3 (LINEAR POSITION-VARYING PERTURBATION). Given an input x € RY, a linear
position-varying (LPV) perturbation, characterized by a matrix P € R**¢ where each row of P adds
up to 1, produces a perturbed input % € R through a linear operation:

% =PxT

Example. Assume we want to perturb x = [1.0, 2.0, 3.0, 4.0] following LPV perturbation using

Sinusoidal offset ¢ = [0.0, 2.0, 0.0, —2.0]. The perturbed input x can be computed as:

1.0 0.0 0.0 0.0 (1.0
0.0 0.0 0.0 1.0|]|2.0
0.0 0.0 1.0 0.0]|3.0
0.0 1.0 0.0 0.0] |4.0

——
P xT

=>
Il

=[1.0,4.0,3.0,2.0]7

where the matrix P is constructed from the offset ¢ as shown in Eq. 6.

, Vol. 1, No. 1, Article . Publication date: September 2025.

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

Verifying Structural Robustness of Deep Neural Network 5

2 raw 2 raw
—— highpass —— linear
1 lowpass 1 gaussian
3 echo 3 sinusoidal
2 3
= =
E 0 E 0
< <
-1 -1
0 20 40 60 0 20 40 60
Sample Sample
(a) Position-invariant perturbation. (b) Position-varying perturbation.

Fig. 1. Differences between LPI and LPV perturbations using different perturbation types.

Fig. 1, which are the same types of filters as shown in the examples above, illustrates the
differences between LPI and LPV used in signal processing. Fig. 1a shows lowpass and highpass
perturbations that can be modeled using LPI perturbations, while Fig. 1b shows the LPV perturbation
with different types representing Gaussian and sinusoidal methods. The key distinction is that
LPI perturbations alter data characteristics (e.g., amplitude, shape, etc.) while LPV perturbations
capture dynamic structural distortions and preserve local data characteristics. Due to uniform
effects, LPI is often used in signal processing applications (because filters affect signals consistently)
and image processing applications (because transformations affect images uniformly), while LPV is
often used in time series analysis (because patterns vary locally).

Assumptions. For LPI, we assume P is scaling proportionally to z and for LPV, we assume c
is changing proportionally to z. In other words, the perturbation space represented by VERIS
formulation might not contain some patterns that values of P (or c) varies arbitrarily. One solution
is to use more than one variable [z, z,, . . ., z,] to control the values of P separately. However, this
approach does not guarantee some constraints among values of P (e.g., summing to 1) and might
return some spurious solutions as encountered in [37].

2.3 Challenges and Approach Overview

SR can capture more complex and realistic perturbations than LR, but verifying SR properties
presents two fundamental challenges that prevent the direct application of existing DNN verifiers.
We address them through a two-step process: (i) reformulating SR properties into LR ones and (ii)
optimizing the unique structure of the reformulated problems to make them more amenable to
existing verifiers.

2.3.1 Challenge 1: Reformulation. LR properties can be formulated using interval constraints to
represent the bounded ranges for additive noise § and therefore are supported by existing DNN
verifiers. In contrast, SR creates interdependencies between input elements (e.g., summation of
each row of P to 1) and cannot be represented by intervals, and therefore are not supported by any
existing verification tools.

To address this challenge, VERIS reformulates SR specifications in two steps (i) creating a pertur-
bation network and (ii) integrating it into the original network. From the given SR specification,
VERIS creates a new perturbation function P, that represents a series of linear and non-linear

, Vol. 1, No. 1, Article . Publication date: September 2025.

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

274
275
276
277

279
280
281
282

284
285
286
287
288
289
290
291
292
293
294

6 Anon.

functions. The operations in P, also vary with respect to a single variable z € [0, 1] that controls
how the perturbation is applied.

Next, VERIS represents P, as a perturbation network and prepend it into the original network to
create a new network N o P, to be verified. Fig. 2 shows an example of a DNN with 4 inputs and its
modified version with a prepended perturbation network P, and on input z that controls how the
perturbation is applied.

Thus, VERIS transformed the original SR problem (N, P,) into an LR one (N o P, ¢), where the
property ¢ is defined as:

$p=Vze[0,1] = (NoP,)(z) =N(x) (2)

Thus, ¢ is an LR and asks whether the network N o P, produces the same classification result as
the original network N on input x for all possible perturbations done to x as controlled by z.

2.3.2 Challenge 2: Optimizations. While the newly formed LR problem can now be run by existing
verifiers, it is quite unique and complex (e.g., with non-linear operations in the perturbation network
P,). Existing DNN verifiers was never designed for this kind of LR problem and in fact was not able
to solve any benchmark problem of this form (e.g., in §5.4).

To address this limitation, we develop two new optimization techniques that enhance the
verification process. First, VERIS combines multiplication and addition into a single FC layer to
simplify the perturbation subnetwork P,, making it easier to reason about. Second, VERIS transforms
absolute operations (e.g., |x|, which is not a standard activation function and thus verifiers, or
more specifically, abstraction domains used by verifiers, are not optimized to handle and become
imprecise over large network) into an equivalent standard ReLU activation that existing verifiers are
more comfortable with. These optimizations make the perturbation subnetwork P, more compatible
with existing DNN verifiers (e.g., all verifiers are optimized to support FC layer and ReLU natively).

2.4 lllustration Example

Consider an example where we have a simple network N with 4 inputs and 2 outputs as shown
in Fig. 2a. We want to verify its SR on the input x = [1.0,2.0,3.0,4.0] when it is perturbed.
For illustration, we use a time-warping perturbation, a transformation often used in time series
based applications like signal processing and audio [36, 66] that shifts each input by an offset
and compresses or stretches the input sequence. Assume the perturbation is characterized by
an offset array ¢ = [0.2,—-1.3,0.4, —1.2]. For example, after the perturbation we might have x =
[1.2,0.7,3.4,2.8] if we apply the full offset. Of course, this is only one possible perturbed input,
and we want to verify N is robust for all possible perturbed inputs that can be generated by this
time-warping perturbation.

Reformulation. VERIS converts the given SR problem into an LR one as follows. First, it represents
the perturbation as a small subnetwork P,, which can also be interpreted as a function, that takes a
single input z € [0, 1] to control how the perturbation is applied. For example, if z = 0, then no
perturbation, and if z = 1, then the full offset ¢ is applied. To construct P,, VERIS uses a generic
interpolation function (k) = max{0, 1 — |k|} [40, 49] to compute the weighted sum (i (k) ensures
that the weights are between 0 and 1) and shifted the inputs using operations including additions
and multiplications (e.g., 1.0 + 0.2z, 3.0 + 0.4z), and absolute functions (e.g., |1 — 1.3z|). For this

, Vol. 1, No. 1, Article . Publication date: September 2025.

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
334
335
336
337
338
339
340
341
342
343

Verifying Structural Robustness of Deep Neural Network 7

(a) Original network (b) Perturbed network

Fig. 2. A new network N o P, with x = [1.0,2.0,3.0,4.0] and ¢ = [0.2,-1.3,0.4,—1.2].

example, the fully constructed P, is

1.0 - 0.2z 0.2z 0.0 0.0 1.0 1.0+ 0.2z
po- 1.0 - 1.0 — 1.3z] 1.0 — 1.32] 0.0 0.0 200 [1.0+]1.0 - 1.3z]
27 0.0 0.0 1.0 — 0.4z 0.4z 3.0 ~ 3.0 + 0.4z
0.0 0.0 1.0 —]1.0 — 1.22] |1.0 — 1.22]| |4.0 3.0+ 1.0 — 1.22]
~——
P xT

VERIS represents P, as a subnetwork parameterized by a single input z and operations including
multiplications and additions represented as weights and biases, and absolute functions represented
as activation functions, as shown in Fig. 2b. The new problem is now LR as shown Eq. 2 which
checks if N o P, produces the same output as the original network N on input x for all perturbations
parameterized by z.

Optimizations. While existing DNN verifiers can now run the new LR problem, they could not
solve it because of the complexity of the subnetwork P,, e.g., absolutes are non-standard nonlinear
activation functions that are difficult to analyze. To address this challenge, VERIS applies two
optimizations to simplify P, architecture. VERIS first combines the multiplication and addition into
a single fully-connected (FC) layer (instead of multiple layers in the original P, subnetwork). For
example, VERIS simplifies the following equation into a single FC layer:

1.0+0.2z 1.0
1.0-1.3z T |1.0 .
504 04z] = Z [0.2 -1.3 04 —1.2] a0l = Lineary p(z)
1.0 - 1.2z w 1.0
——
b

Next, VERIS converts the absolute function (e.g., |1 — 1.3z]) into a series of standard ReLU
activation functions, which are natively supported by existing verifiers.

|1 =1.3z] = ReLU(1 — 1.3z) + ReLU (—(1 — 1.32)) (3)

After these optimizations, we have a simpler perturbation subnetwork P, that consists of only
FC layers and ReLU activations, which are well-supported by existing verifiers. For the running
example, which originally was not solvable by existing verifiers, is now easily solved them (proven
valid by both the af-CrowN [59, 64, 65] and by NEURALSAT [15, 16] verifiers).

We describe the general VERIS algorithmic approach in the next section §3 and evaluate it in §5.

, Vol. 1, No. 1, Article . Publication date: September 2025.

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
384
385
386
387
388
389
390
391
392

8 Anon.

Alg. 1: VERIS Verification Framework

input :DNN N, input x, structural robustness SR (P for LPI or ¢ for LPV), verifier V
output : Verification result: sat, unsat, or timeout
// Step 1: Construct perturbation subnetwork P,

1 if SR = LPI then // LPI perturbation subnetwork construction (§3.1)

2 WePxx—x; // Construct weight matrix Eq. 5

3 be—x; // Construct bias vector Eq. 5

4 | Pz« Linearyp ; // Perturbation subnetwork construction

5 else if SR = LPV then // LPV perturbation subnetwork construction (§3.2)

6 Y(x) <« ReLU(1 — ReLU(x) — ReLU(—x)) ; // Convert operator optimization §3.3

7 | P, « Lineary, o { o Sub; o Linearc ; // Perturbation subnetwork construction
// Step 2: Formulate verification problem

8 M— NoP,; // Construct perturbed network

9 ¢ —V(z) €[0,1] : M(z) = N(x); // Formulate verification property
// Step 3: Verify the verification property ¢

10 return V(¢); // Invoke oracle verifier V

3 The VERIS Approach

Alg. 1 presents the high-level workflow of VERIS’s verification approach, which transforms SR
verification problems into standard LR ones that existing tools can handle directly. The algorithm
takes as inputs the target DNN N, an input x, a SR specification (either LPI characterized by P
or LPV characterized by c), and an oracle verifier V. The algorithm returns possible verification
outcomes: (1) solved (either sat meaning violation found or unsat meaning property verified), or
(2) unsolved (unknown as runtime limit exceeded or an error occurred such as out-of-memory or
implementation issue).

First, VERIS constructs a perturbation subnetwork P, that encodes the SR specification (line 1-
line 7). For LPI specifications, the VERIS computes weight W and bias b from the perturbation
parameters and given input, then creates a single FC layer Linearyy ; that represents the desired
perturbation (line 4) as explained in §3.1. For LPV specifications, the VERIS constructs a multi-layer
subnetwork (e.g., FC and ReLU layers, see §3.2) that models the perturbation (line 7). This step also
employs several optimization techniques to further improve the verification performance (see §3.3).

Next, VERIS transforms the SR problem into an LR one by combining the original network N
with the perturbation subnetwork P, to create a perturbed network M = N o P, (line 8), with one
single input z that controls the perturbation. The problem ¢ now is an LR and specifies that for all

€ [0, 1], the M’s output must match the N’s output on the original input x (line 9).

VERIS invokes the oracle verifier V to solve the formulated problem ¢ (line 10). Note that VERIS
applies optimizations to simplify the networks being checked and make them compatible with
existing verification tools. Moreover, VERIS uses LR representation to represent SR specification,
reduces the number of input dimensions to 1, thus, making problems more manageable.

3.1 LPI Formulation

To model LPI perturbations, VERIS uses Def. 2 employs standard convolution operations to naturally
represent uniform transformations across input. This formulation ensures the same transformation
applies consistently across all positions.

To verify SR problem of different variants of noise matrix P for LPI specification, VERIS converts
the convolution transformation to a perturbation subnetwork P, taking as input a single variable

, Vol. 1, No. 1, Article . Publication date: September 2025.

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429

431
432
433
434
435
436
437
438
439
440
441

Verifying Structural Robustness of Deep Neural Network 9

Fig. 3. LPI perturbation subnetwork construction.

z € [0, 1]. The P, is constructed to satisfy two essential properties: when z = 0, the transformation
reduces to the identity operation (no perturbation), and when z = 1, it applies the target perturbation.
Formally, P, for LPI specification is formulated as:

P,=z-Psxx+(1—-2)-x=z-(P*xx—x)+x (4)

This linear interpolation between the original input x and the fully perturbed input P * x creates
smooth and valid variation across the perturbation space.

To integrate the P, into the original DNN being checked, VERIS leverages the fact that P = x
produces a fixed outcome given the input x and the perturbation matrix P being checked. The
perturbation subnetwork P, can then be transformed to a standard FC layer Linearyy ; with weight
matrix W and bias b as follows:

P,=2Wl+b= Lineary 5 (2) (5)

where W =P s x —x and b = x.

Fig. 3 illustrates the construction of the P,. This formulation uses a FC layer, which are univer-
sally supported by all DNN verification tools as the most fundamental layer in DNNs. While the
underlying operations (multiplication and addition) appear simple, expressing them as a standard
linear layer ensures broad compatibility across verification frameworks, as not all tools support
standalone arithmetic operations.

3.2 LPV Formulation

Similar to LPI perturbations, VERIS uses Def. 3 to systematically model LPV perturbations, which
employs interpolation-based transformations that redistribute input values across neighboring
positions. VERIS can essentially model various types of LPV perturbations by constructing the
noise matrix P using different interpolation i/, where each specific perturbation type requires its
own mathematical characterization. As a concrete example, this work demonstrates the approach
using time-warping [11, 66], which has been widely used in practice [27, 36, 41, 50, 66, 67]. The
time-warping formulation constructs the noise matrix P using two parameters: offset matrix c and
interpolation function . The offset matrix ¢ determines the offset weights of input elements, and
¥ determines the weight distribution between adjacent positions while ensuring weights remain
between 0 and 1.

VERIS uses a generic interpolation (k) = max{0, 1 — |k|} widely used in literature [40, 49] and
varies the offset ¢ by scaling it by z, denoted as ¢, = z - ¢. Formally, the noise matrix P for LPV
specification is defined element-wise as:

Pli,jl=y(i+z-cli] - J) (6)

, Vol. 1, No. 1, Article . Publication date: September 2025.

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478

480
481
482
483
484
485
486
487
488
489
490

10 Anon.

Fig. 4. LPV perturbation subnetwork construction.

Intuitively, P[i, j] captures the weights of the neighboring positions j to the perturbed position i.
Moreover, with this construction, P becomes the identity matrix when z = 0, and target perturbation
matrix when z = 1, thus ensuring the desired properties of the perturbation subnetwork P,.

For a given input x and offset ¢, the perturbation subnetwork P, for LPV specification is con-
structed through a sequence of operations as:

P, =Px' =Mul,o¢o Sub; o Add; o Mul.(2) (7)

This operation sequence implements exactly Eq. 6 through a series of computational steps. Starting
with parameter z, the operations compute (i + z - ¢[i] — j) for all pairs of indices i and j. The Mul,
and Add; operations together compute (i + z - c¢[i]) for each position i. Then Sub; subtracts each j
to produce the full matrix of differences. Finally, i/ converts these differences into interpolation
weights, and Mul, applies them to input x. Fig. 4 illustrates in detail the construction of the
perturbation subnetwork P,.

Compare to LPI perturbations in Eq. 5, the LPV perturbation subnetwork in Eq. 9 is more complex
and involves more non-linear functions (e.g., absolute operation from) that are generally more
challenging for verification tools.

3.3 Optimization

VERIS also introduces several optimization techniques to further improve the verification perfor-
mance. The construction of the perturbation subnetwork P, involves several non-linear functions,
such as absolute function (] - |), which is generally not well-supported or not well-optimized
by existing verification tools (e.g., #-CROWN [64] and NEURALSAT [15] fail miserably). To cope
with this issue, VERIS introduces two optimization techniques to further improve the verification
performance. We give a detailed description of the optimization techniques below.

3.3.1 Merging Linear Operations. In Eq. 7 the perturbation subnetwork P, is built through a
sequence of operations as:

Linearyo Linear ;
—_ —_——
P, =Px’ = Mul, oyo Sub; o Add; o Mul.(2) (8)
P

, Vol. 1, No. 1, Article . Publication date: September 2025.

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Verifying Structural Robustness of Deep Neural Network 11

/\ e - - - - =} - - - - - |

Ry 4l | I

- 1 | 1

- I | I

-7 | I I
- I I I
Z | | |
|] | |

I 1 I

(@) y = ReLU(x) (b) y = |x| (c) y = ReLU(x) + ReLU (—x)

Fig. 5. Abstractions of ReLU and absolute function over x € [Ix, ux].

The combination of scaling Mul. and addition Add; operations can be implemented as a standard
FC layer Linear.; (e.g., weight ¢ and bias i), while the Mul,. can be converted to another FC layer
Lineary (e.g., weight x and zero bias). Therefore, the perturbation subnetwork P, is converted to:

P, = Lineary o ¢ o Sub; o Linear;(z) 9)

These simplifications make the perturbation subnetwork more compatible with existing DNN
verifiers as FC is the most fundamental layer in DNNs reasoning. This also leverages the fact that
existing DNN verifiers analyze the network layer by layer, so Linear counts as one layer while
combining Mul and Add counts as 2, thus reducing the workload for verifiers.

3.3.2 Transforming Non-Linear Operations. The perturbation subnetwork P, in Eq. 9 involves a
non-linear interpolation function ¢, containing the absolute (| - |). The absolute function is not a
standard activation function and thus verifiers, or more specifically, abstraction domains used by
verifiers, are not optimized to handle and become imprecise over large networks.

Fig. 5 illustrates the polytope abstractions for different cases. Fig. 5a shows one typical method
to abstract ReLU [63] and Fig. 5b shows the abstraction for absolute function over x € [, uy],
demonstrating the imprecision of the abstraction for absolute function. Fig. 5¢ shows the abstraction
for combining ReLU (x) and ReLU (—x), which is equivalent to absolute function. Though it requires
two separate abstractions for ReLU, it is more accurate than the abstraction for absolute function.
Moreover, the abstraction of absolute function occurs early in the perturbed network (within the
perturbation subnetwork P,), the imprecision accumulates through out the entire network, making
verifiers unable to solve the problem. More importantly, ReLU is common and well-optimized by
verifiers, therefore, it scales much better than absolute function.

To cope with this issue, VERIS transforms the absolute operator into a standard ReLU activation
function in a semantic-preserving manner. In particular, the absolute can be transformed into
|x] = ReLU (x) + ReLU (—x), and the interpolation function ¥ in Eq. 9 can be transformed to:

¥ (x) = max{0,1 — |x|} = ReLU (1 — ReLU(x) — ReLU (—x)) (10)

This transformation ensures that the absolute operation is preserved while being making existing
DNN verifiers more comfortable with.

4 Experimental Design

We evaluate VERIS using the following research questions:

RQ1 (§5.1): How does VERIS perform on LPI and LPV perturbations?
RQ2 (§5.2): How does VERIS show robustness and vulnerability patterns?
RQ3 (§5.3): How compatible is VERIS with existing verification tools?
RQ4 (§5.4): How does optimization impact VERIS’s performance?

, Vol. 1, No. 1, Article . Publication date: September 2025.

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

12 Anon.

Tab. 1. Benchmark instances.

Task Network Type Model SR Params Neurons Problems
M3 LPI 39K 41K 540
KWS FC + CNN + Pooling + ReLU LPV 47K 48M >40
M5 LPI 52K 41K 540
LPV 60K 48M 540
M3 LPI 36K 27K 432
ECG FC + CNN + Pooling + ReLU LPV 42K 22M 432
M5 LPI 49K 28K 432
LPV 54K 22M 432
FC + CNN + ReLU Oval21 LPI 112K 3K 540
Image FC + ResNet + CNN + ReLU Sri_Resnet_ A LPI 360K 11K 540
FC + ResNet + CNN + ReLU Cifar100 LPI 2.5M 55K 540
Total 7 5508

RQ5 (§5.5): How do structural perturbations compare to over-approximation approaches?

4.1 Verification Benchmarks

We use three domains to answer the RQs: (i) Keyword Spotting (KWS) for voice command recog-
nition [audio], (ii) ECG classification for cardiac rhythm monitoring [health], and (iii) image and
object recognition [image].

Network Datasets. Tab. 1 shows our networks, which comprise both domain-specific trained
models and standard benchmark networks used in the literature and competitions [5] For KWS
and ECG, we train M3 and M5 networks [12] which are deep CNNs for raw waveforms prediction
task. We vary the number of channels for convolution layers in these networks to 32 and 64.
We train KWS networks using the Google Speech Commands dataset [60], focusing on short
utterances (approximately 1 second) of common voice commands recorded under diverse acoustic
conditions. For ECG networks, we use the CardiacArrhythmia dataset [26], which provides cardiac
rhythm data across four distinct arrhythmia classes. For image classification, we use pre-trained
networks from recent VNN-COMPs [2, 5, 6]. These networks include Oval21, Sri_Resnet_A, and
Cifar100 architectures, providing diverse baselines for evaluating structural robustness verification
on computer vision tasks.

SR Specifications. Our benchmarks include both LPI and LPV perturbations across various per-
turbation levels and transformation configurations. For LPI specifications, we construct verification
instances by defining specific kernels, e.g., Echo, Low-pass, and High-pass filters for audio and
health domains, and Motion Blur kernels for image data. The perturbation space spans multiple
kernel sizes and z € {[0.0,0.1], [0.0,0.5], [0.0, 1.0]} to capture diverse modification patterns.

LPV perturbations employ varying position matrices ¢ defined by Linear, Sinusoidal, and Gauss-
ian coefficient patterns with three lower intensity levels z € {[0.0,0.1], [0.0,0.2], [0.0,0.3]}. Due to
the increased computational complexity inherent in LPV specifications, we employ these moder-
ate perturbation intensities to ensure reasonable verification times while maintaining sufficient
robustness assessment coverage.

, Vol. 1, No. 1, Article . Publication date: September 2025.

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

Verifying Structural Robustness of Deep Neural Network 13

Tab. 1 presents the benchmark statistics across all evaluation domains. The resulting benchmark
contains 5508 problems that span diverse networks of sizes from 3K to 48M neurons. Note that
we also list the number of neurons in addition to network parameters since the complexity of
verification often depends on the number of neurons.

4.2 Verifiers and Experimental Setup

DNN Verifiers. We experiment VERIS using af-CROWN [64, 65] and NEURALSAT [15, 16], the
two top performers in the recent VNN-COMP competitions. af-CROWN has been consistently
the winner in VNN-COMPs while NEURALSAT is a new comer that ranked 2nd back-to-back in
VNN-COMPs’24 [5] and ’25 [55].

State-of-the-art DNN verifiers typically employ Branch-and-Bound (BaB) algorithm [7], in which
“branch” refers to either neuron splitting or input splitting strategies to determine unsatisfiability or
counterexamples. The former splits the hidden neuron boundaries during verification and performs
abstraction to estimate bounds. The latter is often invoked on networks with low input dimensions,
splitting the input space (instead of neurons) into smaller subspaces. For a;-CROWN, we use two
different variants: neuron splitting «f-CrownN (N) and input splitting «3-CrowN (I). We use the
default setting of NEURALSAT as it automatically determines and switches between neuron and
input splitting based on the input problem.

Experimental Envionment. Our experiments were run on a Linux machine with an Intel(R) Xeon(R)
8-core 2.20GHz CPU, 32GB RAM, and an NVIDIA L4 GPU with 24 GB VRAM.

We borrowed the timeout setting from recent VNN-COMPs [5, 6] which allows up to 6 hours per
benchmark. For example, for the KWS M3 benchmark, the timeout can be up to 6 x 3600/1080 = 20
seconds per instance. To compensate for differences in platforms (CPU and GPU) used for evaluation,
we settled down the timeout for each problem instance to 30 seconds for LPI instances and 60
seconds for LPV instances due to the increased complexity.

5 Results and Analysis
5.1 RAQT1: VERIS performances on LPI and LPV perturbations

LPI Specifications. Tab. 2 presents the LPI verification performance of VERIS (used with the
NEURALSAT tool) when applied to KWS/ECG tasks with three different filters (Lowpass, Echo, and
Highpass) and Image task under motion blur perturbations across three blur angles (0, 45, and 90
degrees). Overall, VERIS was able to solve 3342/3564 problems (94%).

Among the three tasks, ECG has a higher number of timeout instances (128 instances) compared
to KWS (29 instances) and Image (65 instances). This difference can be attributed to the distinct
characteristics of each data type. ECG signals are relatively unstructured, and filtering operations
significantly alter the signal characteristics, creating diverse perturbation spaces that are challenging
to verify. In contrast, KWS and image data have more structured representations that are less affected
by filtering operations. Images maintain visual coherence after filtering, and audio signals remain
interpretable for keyword recognition even when perturbed. Finally, and unsurprisingly, when the
range of perturbation intensity z increases, the search space increases (e.g., z € [0.0,0.1]vs.[0.0, 1.0]),
and the number of solved instances decreases.

LPV Specifications. Tab. 3 shows that LPV problems are more challenging, with a total of 947/1944
(49%) solved instances in total. This performance degradation is expected since the networks of
LPV perturbations with prepended subnetworks have many more neurons (e.g., 48M) compared to
LPI ones (e.g., 41K). Still, despite the additional complexity for representing LPV characteristics,

, Vol. 1, No. 1, Article . Publication date: September 2025.

638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686

14 Anon.

Tab. 2. Results on LPI (solved/unsolved) Tab. 3. Results on LPV (solved/unsolved)
Task z Lowpass Echo Highpass Task z Linear Sinusoidal Gaussian
[0.0,0.1] 86/10 86/10 81/15 [0.0,0.1] 85/11 73/23 82/14
ECG [0.0,0.5] 78/18 79/17 75/21 ECG [0.0,0.2] 79/17 59/37 65/31
[0.0,1.0] 86/10 75/21 90/6 [0.0,0.3] 66/30 23/73 35/61
[0.0,0.1] 120/0 120/0 120/0 [0.0,0.1] 112/8 80/40 89/31
KWS [0.0,0.5] 1200 113/7 117/3 KWS [0.0,0.2] 41/79 16/104 23/97
[0.0,1.0] 116/4 108/12 117/3 [0.0,0.3] 18/102 0/120 1/119
Total 606/42 581/67 600/48 Total 401/247 251/397 295/353
Task z Blur 0 Blur 45 Blur 90
[0.0,0.1] 180/0 180/0 180/0
Image [0.0,0.5] 177/3 163/17 179/1
[0.0,1.0] 162/18 172/8 162/18
Total 519/21 515/25 521/19
Tab. 4. Results on LPI (unsat/sat/timeout) Tab. 5. Results on LPV (unsat/sat/timeout)
Task z € [0.0,0.1] z € [0.0,0.5] z € [0.0,1.0] Task z € [0.0,0.1] z € [0.0,0.2] z € [0.0,0.3]
KWS 360/0/0 349/1/10 296/45/19 KWS 281/0/79 80/0/280 19/0/341
Image 523/17/0 374/145/21 202/294/44 ECG 240/0/48 203/0/85 124/0/164

ECG 248/5/35 153/79/56 77/174/37

VERIS was able to solve 49% of LPV problems, which is significant given the novelty and difficulty
of LPV verification that was not possible before.

A closer look reveals that VERIS performs on Linear problems better than Sinusoidal and Gaussian
ones across all tasks and all perturbation configurations. This is due to Linear slightly perturbs
the input compared to Sinusoidal and Gaussian (see Fig. 1b). More specifically, Linear marginally
changes the input and creates a smaller perturbation space, in which the verification problems are
easier to solve. On the other hand, Sinusoidal and Gaussian drastically alter the input, resulting in
a larger perturbation space and thus their problems become harder to verify.

5.2 RQ2: Attacks and Patterns

The main goal of robustness verification is to show whether a network is robust or vulnerable to
(adversarial) attacks. The results in §5.1 give the overall performance of VERIS and here we look
closer into the results to determine vulnerable patterns and robustness of the networks. Recall
that DNN verification tools return either unsat (the property is verified), sat (a counterexample is
found, i.e., an adversarial example), or timeout (the tool is unable to solve the problem).

Tab. 4 presents the aggregated performance of LPI perturbations, revealing distinct vulnerability
patterns among the three tasks. As the perturbation intensity z increases (i.e., more aggressive
perturbations), all tasks exhibit the expected trend where problems become easier to attack and

, Vol. 1, No. 1, Article . Publication date: September 2025.

687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735

Verifying Structural Robustness of Deep Neural Network 15

100 9395 9295 96 95 96 100 BN NEURALSAT
. 8990 81 . . of-Crown (I)
£ %0 7 1 £ 80 m o3-CROWN (N)
0 65 70 67 0
g S 61
ch 60 E 60
@ a2 47
i 40 39 = 41 38 =
5 34 B 40
i 2 2997
3 20 3 2523
. I \ T
0 0
Lowpass Echo Highpass Blur.0 Blur45 Blur-90 Linear Sinusoidal Gaussian
(a) Time-invariant perturbations. (b) Time-varying perturbations.

Fig. 6. VERIS performances using different underlying verification tools.

harder to verify. KWS shows remarkable robustness, with no attack at z € [0.0,0.1] and z € [0.0, 0.5]
and only 45 attacks at maximum intensity. This resilience can be attributed to the structured nature
of speech signals, where filtering operations preserve the essential acoustic features necessary for
keyword recognition. In contrast, ECG demonstrates high vulnerability, with the number of attacks
increasing from 5 to 174 instances as z grows.

Tab. 5 shows the verification results on LPV perturbations, revealing a different pattern compared
to LPI results. Notably, no successful attacks were found across any task or perturbation intensity
level, indicating that LPV perturbations used preserve the structural integrity of the input signals.
However, as perturbation intensity increases, verification becomes increasingly challenging, with
the number of verified instances decreasing and timeout instances growing substantially. KWS
demonstrates particularly challenging verification characteristics, with verified instances dropping
substantially from 281 to 19 as perturbation intensity increases. This difficulty stems from the
longer input sequences in KWS tasks (4000) compared to ECG tasks (2714), which result in larger
networks (e.g., 48M vs 22M neurons) when combined with LPV subnetworks.

5.3 RQ3: Compatibility with Existing Verification Tools

One of the contributions of VERIS lies in enabling existing verification tools to handle SR problems
that were previously impossible to express or solve. Fig. 6 demonstrates this compatibility across
different verifier configurations, though with varying degrees of success depending on perturbation
complexity and verifier configurations.

For simpler perturbations like LPI, the transformation proves highly effective, with solved
percentages reaching 95% for Highpass and Lowpass, and 96% for Motion Blur 0 and 90. However,
more complex perturbations present significant challenges: while Linear LPV perturbations achieve
moderate verification rates (up to 61%), Gaussian and Sinusoidal patterns exhibit lower rates due to
their intrinsic computational complexity. Note that LPV problems are harder than LPI ones as LPV
networks are a lot larger as in Tab. 1. This performance variation reflects the inherent difficulty
of the underlying mathematical transformations rather than limitations in VERIS compatibility.
The key achievement is that existing verifiers can now solve these structured robustness problems,
whereas before VERIS such verification was impossible.

VERIS with backbone ai-CrowN worked well with input splitting (I) configuration, while neuron
splitting (N) struggles to solve many problems. This performance pattern aligns with VERIS’s

, Vol. 1, No. 1, Article . Publication date: September 2025.

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

16 Anon.

Tab. 6. VERIS performances on LPV perturbations (solved/unsolved)

Variant z€[0.0,0.1] z€[0.0,0.2] ze [0.0,0.3]

Unoptimized 0/648 0/648 0/648

Optimized 521/127 283/365 143/505

formulation design, which reduces the effective input dimension to a single dimension z, making
input splitting strategies particularly effective for space exploration. Conversely, NEURALSAT, which
automatically selects input or neuron splitting depending on the input problem, allowed VERIS to
solve many problems and maintain high performance across perturbation types and domains.

5.4 RQ4: Effectiveness of VERIS Optimizations

We compare the performance of VERIS when it is unoptimized (i.e., the original formulation of
the perturbation subnetwork P, as shown in Eq. 7) and optimized (e.g., compressing layers and
converting to ReLU as shown in Eq. 7). Note that we only show for LPV problems because the
perturbation subnetwork P, of LPI transformations already has just one linear layer (e.g., no
activation function).

Tab. 6 shows that optimization is critically necessary. All unoptimized problems fail to solve
within the time limit, with all 648 instances per perturbation level resulting in timeouts. In con-
trast, the optimized formulation successfully solves up to 80% (521 instances) at z = 0.1, 44% (283
instances) at z = 0.2, and 22% (143 instances) at z = 0.3. Performance degrades when perturbation
strength increases because it creates a larger input space to explore, thus, problems are more
challenging to solve. More specifically, larger z causes more imprecise abstraction, given that LPV
problems inherently has many neurons to abstract (e.g., 48M), making the problems unsolvable.
Additionally, as shown in Fig. 5, the abstraction of the absolute is less precise compared to the
one using ReLUs, and the imprecision propagates through the network resulting in being unsolv-
able. This substantial improvement highlights how the ReLU conversion optimization transforms
computationally intractable verification problems into solvable ones for existing verifiers.

5.5 RQ5: Comparison to Overapproximation Approaches

The abstraction-based approach in [37, 43] uses an over-approximation for verifying a subset of
LPI properties for image classifiers. They work by computing the worst-case of the SR pertur-
bation (overapproximated bounds of perturbed inputs) under some assumptions, e.g., assuming
convolutional perturbation with the kernel values are from [0, 1] and summing to 1 [37], or pixel-
level perturbations under some spatial smoothness constraints [43]. In addition, the considered
robustness is strictly less expressive than our LPI specification because it does not consider the
constraints among kernel elements and interactions between kernels and input, which are crucial
for structural perturbations.

To compare this approach with VERIS, we extend it to handle arbitrary kernels to capture VERIS’s
specifications with kernel bounds (Kmin, Kmax), where Kpin < 0 < Kpgyx. It computes upper (ub)
and lower (Ib) bounds for outputs by analyzing input neighborhoods of the kernel size, then
computes bounds as:

ub = max{neighbor, 0} X Kpax + min{neighbor, 0} X Ky

Ib = min{neighbor, 0} X Kpqx + max{neighbor,0} X Kpin (11)

, Vol. 1, No. 1, Article . Publication date: September 2025.

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806

808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

Verifying Structural Robustness of Deep Neural Network 17

Tab. 7. Performances of Overapproximation and VERIS approaches on SR perturbations (unsat/sat/timeout)

Method Lowpass Echo Highpass Blur 0 Blur 45 Blur 90
Overapproximation 0/630/18 0/648/0 0/648/0 0/540/0 0/540/0 0/540/0
VERIS 485/121/42 485/96/67 513/87/48 386/133/21 330/185/25 383/138/19

where max{neighbor, 0} and min{neighbor, 0} are the positive and negative parts of the neigh-
borhood, respectively. Intuitively, these equations perform a standard interval propagation for
the output by considering the worst-case of the perturbation. The verification problem of over-
approximation approach [37, 43] is then formulated as LR specification as:

Vi € [Ib,ub] = N(#) = N(x)

The results in Tab. 7 using LPI benchmarks, which are the primary focus of the abstraction-based
approach, show that the specifications generated by the over-approximation approach are all
violations, e.g., counterexamples are found for all problems. It is due to either large intervals of
inputs created by the over-approximation or the high-dimensional input space (e.g., the same as
the original input size). Even for the smallest perturbation strength of 0.1, none of these properties
could be verified for any networks considered in our evaluation. Note that those counterexamples
are considered as spurious counterexamples since they do not comply with SR constraints. In
contrast, VERIS was able to verify many properties across perturbation strengths and types. More
importantly, when VERIS found counterexamples, they are all valid counterexamples that satisfy
the SR constraints.

6 Threats to Validity

Regarding threats to internal validity, we built VERIS on top of established verification tools (a -
CrownN and NEURALSAT) rather than implementing verification algorithms from scratch, thereby
leveraging extensively tested codebases. We validated our algorithm through unit testing, including
verification that identity transformations are produced when z = 0 and that maximum perturbations
are produced when z = 1 for both LPI and LPV specifications.

Regarding threats to the generalizability of our results, our evaluation focuses primarily on audio,
health and image domains. This domain selection was motivated by the natural applicability of
SR, but it may limit the application of our work to other domains where different types of SR are
relevant. Furthermore, our LPV evaluation was restricted to time-warping perturbations. Other LPV
perturbations such as complex spatial transformations may exhibit different verification behaviors.

Regarding threats to the validity of our metrics and experimental design, we used standard
verification metrics (number of solved instances, timeout, etc.) that are well-established in the
DNN verification literature [2, 5, 6, 55], ensuring comparability with prior work. However, these
metrics may not fully capture the practicality of SR verification compared to LR approaches. Our
comparison in §5.5 relies on constructing interval bounds that may not represent the tightest
possible approximation, potentially affecting the fairness of the comparison.

7 Related Work

LPI and LPV are common in many tasks and applications. LPV perturbations have been applied in
machine learning for sequence alignment [11] and pattern recognition [41, 50], such as managing
temporal variations in computer vision [66], audio processing for signal analysis [36], enhanc-
ing activity recognition through data augmentation [54], and improving accuracy in time series
classification by applying temporal modifications [27]. LPI perturbations have been extensively

, Vol. 1, No. 1, Article . Publication date: September 2025.

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882

18 Anon.

investigated in computer vision, by assessing DNN models against uniform corruptions [22, 32, 51]
and developing consistent training algorithms [61]. In audio processing, uniform acoustic charac-
teristics have been utilized for speaker verification [13] and device-consistent classification [23].
Despite being widely used in practice, the robustness of DNNs against LPI and LPV perturbations
has not been formally defined or verified, which is the focus of this work.

The work in [37, 43], as mentioned in §5.5, considered a limited subset of our defined LPI
properties, e.g., restricting convolution kernels to values in [0, 1] that sum to 1 [37], or pixel-
level spatial smoothness constraints [43]. Those approaches compute worst-case bounds given
the perturbation boundaries and formulate the problem as a standard LR verification task. While
enabling existing verification techniques, the resulting overapproximated spaces makes the work
ineffective in practice and unable to solve many problems (as illustrated in §5.5). Additionally,
they do not consider LPV properties, which represent an important class of perturbations and
is much more challenging to verify as shown in §5.1. VERIS addresses both complete LPI and
LPV properties through an approach that incorporates perturbation subnetworks directly into the
network architecture.

DNN verification work has primarily focused on LR specifications [5, 15, 19, 29, 65], in which
specifications are created by adding small perturbations to each input independently. However, no
prior work has focused specifically on verifying SR such as LPI and LPV specifications. To the best
of our knowledge, VERIS is the first framework to define and verify SR properties for DNNs.

Constraint-based solvers, like PLANET [17] and MARABOU [62], which encode the DNN verifica-
tion problem as an SMT formula, are potentially capable of encoding complex constraints in SR
properties, but they do not scale sufficiently to handle realistic DNNs [2, 6]. In contrast, abstraction-
based DNN verifiers overapproximate nonlinear computations (e.g., ReLU) of the network using
abstract domains, such as interval [58], zonotope [44], polytope [45, 63], starset/imagestar [52], to
scale verification. Such techniques and tools include MN-BaB [19], RELUVAL [58], NEURIFY [57],
N~v [53], NNENUM [1], afi-CROWN [59, 64, 65], etc. This work leverages two state-of-the-art
abstraction-based DNN verifiers, af-CRowN and NEURALSAT, to solve SR problems efficiently.

8 Conclusion and Future Work

This work introduced SR properties that extend DNN verification beyond the limitations of tradi-
tional LR formulations. By defining LPI and LPV perturbation classes, we captured the structured
transformations that occur in many domains but cannot be expressed through interval constraints.
The key insight of our approach lies in transforming complex SR verification problems into LR
ones, allowing existing verification tools to be solve problems they could not previously handle.

VERIS enables the verification of structural robustness of DNNs against a wide range of per-
turbation types. VERIS provides a tractable, compatible with state-of-the-art DNN verifiers, and
optimized representation of the structured perturbations. It allows for an efficient verification of
DNNs for multi-domain tasks under diverse perturbations, with 94% and 49% of verified properties
for LPI and LPV, respectively.

Several promising directions emerge from this work. The perturbation subnetwork encoding
approach can be extended to capture additional classes of structured transformations beyond
convolution-based and time-warping perturbations, including elastic deformations [9], perspective
transformations [35], and domain-specific perturbations in robotics and autonomous systems such
as those in [20, 42]. Furthermore, the general principle of encoding complex verification properties as
neural network components suggests broader applications beyond robustness analysis, potentially
enabling verification of other structured properties such as fairness and domain adaptation [4, 46].

, Vol. 1, No. 1, Article . Publication date: September 2025.

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904

906
907
908
909
910
911
912
913
914

916
917
918
919

921
922
923
924
925
926
927
928
929
930
931

Verifying Structural Robustness of Deep Neural Network 19

9 Data Availability

VERIS is available at: https://anonymous.4open.science/r/VeriS/

References

(1]

[11]
[12]
[13]

[14]

[15]
[16]
[17]
[18]

[19]

[20]
[21]

[22]

Stanley Bak. 2021. nnenum: Verification of ReLU Neural Networks with Optimized Abstraction Refinement. In NASA
Formal Methods Symposium. Springer, 19-36. doi:10.1007/978-3-030-76384-8_2

Stanley Bak, Changliu Liu, and Taylor Johnson. 2021. The Second International verification of Neural Networks
Competition (VNN-COMP 2021): Summary and Results. arXiv preprint arXiv:2109.00498 (2021). doi:10.48550/arXiv.
2109.00498

Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis, Aditya Nori, and Antonio Criminisi. 2016.
Measuring neural net robustness with constraints. Advances in neural information processing systems 29 (2016).
Sumon Biswas and Hridesh Rajan. 2023. Fairify: Fairness verification of neural networks. In 2023 ieee/acm 45th
international conference on software engineering (icse). IEEE, 1546-1558.

Christopher Brix, Stanley Bak, Taylor T Johnson, and Haoze Wu. 2024. The Fifth International Verification of Neural
Networks Competition (VNN-COMP 2024): Summary and Results. arXiv preprint arXiv:2412.19985 (2024).
Christopher Brix, Mark Niklas Miiller, Stanley Bak, Taylor T Johnson, and Changliu Liu. 2023. First three years of the
international verification of neural networks competition (VNN-COMP). International Journal on Software Tools for
Technology Transfer (2023), 1-11. doi:10.48550/arXiv.2301.05815

Rudy Bunel, Jingyue Lu, Ilker Turkaslan, Philip HS Torr, Pushmeet Kohli, and M Pawan Kumar. 2020. Branch and
bound for piecewise linear neural network verification. Journal of Machine Learning Research 21, 42 (2020), 1-39.
Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness of neural networks. In 2017 ieee
symposium on security and privacy (sp). leee, 39-57.

Isaac Chao, Ulrich Pinkall, Patrick Sanan, and Peter Schroder. 2010. A simple geometric model for elastic deformations.
ACM transactions on graphics (TOG) 29, 4 (2010), 1-6.

Jinyin Chen, Chengyu Jia, Yunjie Yan, Jie Ge, Haibin Zheng, and Yao Cheng. 2024. A miss is as good as a mile:
Metamorphic testing for deep learning operators. Proceedings of the ACM on Software Engineering 1, FSE (2024),
2005-2027.

Marco Cuturi and Mathieu Blondel. 2017. Soft-dtw: a differentiable loss function for time-series. In International
conference on machine learning. PMLR, 894-903.

Wei Dai, Chia Dai, Shuhui Qu, Juncheng Li, and Samarjit Das. 2017. Very deep convolutional neural networks for raw
waveforms. In 2017 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, 421-425.
Brecht Desplanques, Jenthe Thienpondt, and Kris Demuynck. 2020. Ecapa-tdnn: Emphasized channel attention,
propagation and aggregation in tdnn based speaker verification. arXiv preprint arXiv:2005.07143 (2020).

Swaroopa Dola, Matthew B Dwyer, and Mary Lou Soffa. 2023. Input Distribution Coverage: Measuring Feature
Interaction Adequacy in Neural Network Testing. ACM Transactions on Software Engineering and Methodology 32, 3
(2023), 1-48. https://dl.acm.org/doi/10.1145/3576040

Hai Duong, ThanhVu Nguyen, and Matthew B Dwyer. 2025. NeuralSAT: A High-Performance Verification Tool for
Deep Neural Networks. In International Conference on Computer Aided Verification. to appear.

Hai Duong, Dong Xu, Thanhvu Nguyen, and Matthew B. Dwyer. 2024. Harnessing Neuron Stability to Improve DNN
Verification. Proc. ACM Softw. Eng. 1, FSE, Article 39 (2024), 23 pages. doi:10.1145/3643765

Ruediger Ehlers. 2017. Formal verification of piece-wise linear feed-forward neural networks. In International
Symposium on Automated Technology for Verification and Analysis. Springer, 269-286. doi:10.1007/978-3-319-68167-2_19
Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain Muller. 2019. Adver-
sarial attacks on deep neural networks for time series classification. In 2019 International joint conference on neural
networks (IJCNN). IEEE, 1-8.

Claudio Ferrari, Mark Niklas Mueller, Nikola Jovanovi¢, and Martin Vechev. 2022. Complete Verification via Multi-
Neuron Relaxation Guided Branch-and-Bound. In International Conference on Learning Representations. doi:10.48550/
arXiv.2205.00263

Rod Frehlich. 2001. Errors for space-based Doppler lidar wind measurements: Definition, performance, and verification.
Journal of Atmospheric and Oceanic Technology 18, 11 (2001), 1749-1772.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572 (2014).

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross Girshick. 2022. Masked autoencoders
are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
16000-16009.

, Vol. 1, No. 1, Article . Publication date: September 2025.

https://anonymous.4open.science/r/VeriS/
https://doi.org/10.1007/978-3-030-76384-8_2
https://doi.org/10.48550/arXiv.2109.00498
https://doi.org/10.48550/arXiv.2109.00498
https://doi.org/10.48550/arXiv.2301.05815
https://dl.acm.org/doi/10.1145/3576040
https://doi.org/10.1145/3643765
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.48550/arXiv.2205.00263
https://doi.org/10.48550/arXiv.2205.00263

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963

965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

20

[23]

[24]
[25]
[26]
[27]
[28]

[29]

[30]

[31]
[32]

[33]

[34]
[35]
[36]
[37]
[38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]
[46]

[47]

Anon.

Hu Hu, Chao-Han Huck Yang, Xianjun Xia, Xue Bai, Xin Tang, Yajian Wang, Shutong Niu, Li Chai, Juanjuan Li,
Hongning Zhu, et al. 2021. A two-stage approach to device-robust acoustic scene classification. In ICASSP 2021-2021
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 845-849.

Qiang Hu, Yuejun Guo, Xiaofei Xie, Maxime Cordy, Lei Ma, Mike Papadakis, and Yves Le Traon. 2024. Test optimization
in dnn testing: a survey. ACM Transactions on Software Engineering and Methodology 33, 4 (2024), 1-42.

Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. 2017. Safety verification of deep neural networks. In
International conference on computer aided verification. Springer, 3-29. doi:10.1007/978-3-319-63387-9_1

The PhysioNet/Computing in Cardiology Challenge. 2017. Cardiac Arrhythmia Dataset. https://physionet.org/
content/challenge-2017/1.0.0/

Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain Muller. 2019. Deep
learning for time series classification: a review. Data mining and knowledge discovery 33, 4 (2019), 917-963.

Fazle Karim, Somshubra Majumdar, and Houshang Darabi. 2020. Adversarial attacks on time series. IEEE transactions
on pattern analysis and machine intelligence 43, 10 (2020), 3309-3320.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel] Kochenderfer. 2017. Towards proving the adversarial
robustness of deep neural networks. Proc. 1st Workshop on Formal Verification of Autonomous Vehicles (FVAV), pp. 19-26
(2017).

Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding deep learning system testing using surprise adequacy. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE, 1039-1049. https://dl.acm.org/doi/10.
1109/ICSE.2019.00108

Klas Leino, Zifan Wang, and Matt Fredrikson. 2021. Globally-robust neural networks. In International Conference on
Machine Learning. PMLR, 6212-6222.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. 2022. A convnet
for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 11976-11986.
Yu-Seung Ma, Shin Yoo, and Taeho Kim. 2021. Selecting test inputs for DNNs using differential testing with subspe-
cialized model instances. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 1467-1470.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. 2017. Towards deep
learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017).

Jack Mezirow. 1978. Perspective transformation. Adult education 28, 2 (1978), 100-110.

Meinard Miiller. 2015. Fundamentals of music processing: Audio, analysis, algorithms, applications. Vol. 5. Springer.
Mallek Mziou-Sallami and Faouzi Adjed. 2022. Towards a Certification of Deep Image Classifiers against Convolutional
Attacks.. In ICAART (2). 419-428.

Paarth Neekhara, Shehzeen Hussain, Prakhar Pandey, Shlomo Dubnov, Julian McAuley, and Farinaz Koushanfar. 2019.
Universal adversarial perturbations for speech recognition systems. arXiv preprint arXiv:1905.03828 (2019).

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Ananthram Swami. 2016.
The limitations of deep learning in adversarial settings. In 2016 IEEE European symposium on security and privacy
(EuroS&P). IEEE, 372-387.

Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2023. Physically based rendering: From theory to implementation. MIT
Press.

Thanawin Rakthanmanon, Bilson Campana, Abdullah Mueen, Gustavo Batista, Brandon Westover, Qiang Zhu, Jesin
Zakaria, and Eamonn Keogh. 2012. Searching and mining trillions of time series subsequences under dynamic time
warping. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining.
262-270.

Vijay Rengarajan, Yogesh Balaji, and AN Rajagopalan. 2017. Unrolling the shutter: Cnn to correct motion distortions.
In Proceedings of the IEEE Conference on computer Vision and Pattern Recognition. 2291-2299.

Anian Ruoss, Maximilian Baader, Mislav Balunovi¢, and Martin Vechev. 2021. Efficient certification of spatial robustness.
In Proceedings of the AAAI conference on artificial intelligence, Vol. 35. 2504-2513.

Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Piischel, and Martin Vechev. 2018. Fast and effective
robustness certification. Advances in neural information processing systems 31 (2018). https://dl.acm.org/doi/10.5555/
3327546.3327739

Gagandeep Singh, Timon Gehr, Markus Piischel, and Martin Vechev. 2019. An abstract domain for certifying neural
networks. Proceedings of the ACM on Programming Languages 3, POPL (2019), 1-30. doi:10.1145/3290354

Bing Sun, Jun Sun, Ting Dai, and Lijun Zhang. 2021. Probabilistic verification of neural networks against group
fairness. In International Symposium on Formal Methods. Springer, 83-102.

Youcheng Sun, Xiaowei Huang, Daniel Kroening, James Sharp, Matthew Hill, and Rob Ashmore. 2019. Structural Test
Coverage Criteria for Deep Neural Networks. ACM Transactions on Embedded Computing Systems (TECS) 18, 5s (2019),
1-23. doi:10.1145/3358233

, Vol. 1, No. 1, Article . Publication date: September 2025.

https://doi.org/10.1007/978-3-319-63387-9_1
https://physionet.org/content/challenge-2017/1.0.0/
https://physionet.org/content/challenge-2017/1.0.0/
https://dl.acm.org/doi/10.1109/ICSE.2019.00108
https://dl.acm.org/doi/10.1109/ICSE.2019.00108
https://dl.acm.org/doi/10.5555/3327546.3327739
https://dl.acm.org/doi/10.5555/3327546.3327739
https://doi.org/10.1145/3290354
https://doi.org/10.1145/3358233

981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

Verifying Structural Robustness of Deep Neural Network 21

[48]
[49]
[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]
[61]

[62]

[63]

[64]

[65]
[66]
[67]

[68]

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.
2013. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013).

Richard Szeliski. 2022. Computer vision: algorithms and applications. Springer Nature.

Romain Tavenard, Johann Faouzi, Gilles Vandewiele, Felix Divo, Guillaume Androz, Chester Holtz, Marie Payne,
Roman Yurchak, Marc Rufiwurm, Kushal Kolar, et al. 2020. Tslearn, a machine learning toolkit for time series data.
Journal of machine learning research 21, 118 (2020), 1-6.

Hugo Touvron, Matthieu Cord, and Hervé Jégou. 2022. Deit iii: Revenge of the vit. In European conference on computer
vision. Springer, 516-533.

Hoang-Dung Tran, Neelanjana Pal, Diego Manzanas Lopez, Patrick Musau, Xiaodong Yang, Luan Viet Nguyen,
Weiming Xiang, Stanley Bak, and Taylor T Johnson. 2021. Verification of piecewise deep neural networks: a star set
approach with zonotope pre-filter. Formal Aspects of Computing 33 (2021), 519-545.

Hoang-Dung Tran, Neelanjana Pal, Patrick Musau, Diego Manzanas Lopez, Nathaniel Hamilton, Xiaodong Yang,
Stanley Bak, and Taylor T Johnson. 2021. Robustness Verification of Semantic Segmentation Neural Networks Using
Relaxed Reachability. In International Conference on Computer Aided Verification. Springer, 263-286. doi:10.1007/978-3-
030-81685-8_12

Terry T Um, Franz M]J Pfister, Daniel Pichler, Satoshi Endo, Muriel Lang, Sandra Hirche, Urban Fietzek, and Dana
Kuli¢. 2017. Data augmentation of wearable sensor data for parkinson’s disease monitoring using convolutional neural
networks. In Proceedings of the 19th ACM international conference on multimodal interaction. 216—220.

VNN-COMP 2025. 2025. VNN-COMP 2025 Slides. https://docs.google.com/presentation/d/1ep-
hGGotgWQF6SA0]IpQénFgs21XoyuLMM-bORzNvrQ/edit?usp=sharing

Longtian Wang, Xiaofei Xie, Xiaoning Du, Meng Tian, Qing Guo, Zheng Yang, and Chao Shen. 2023. DistXplore:
Distribution-guided testing for evaluating and enhancing deep learning systems. In Proceedings of the 31st ACM Joint
European Software Engineering Conference and Symposium on the Foundations of Software Engineering. 68-80.

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018. Efficient formal safety analysis of neural
networks. Advances in Neural Information Processing Systems 31 (2018). https://dl.acm.org/doi/10.5555/3327345.3327533
Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018. Formal security analysis of neural
networks using symbolic intervals. In 27th USENIX Security Symposium (USENIX Security 18). 1599-1614. https:
//dl.acm.org/doi/10.5555/3277203.3277323

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter. 2021. Beta-CROWN: Efficient
Bound Propagation with Per-neuron Split Constraints for Complete and Incomplete Neural Network Robustness
Verification. Advances in Neural Information Processing Systems 34 (2021), 29909-29921. doi:10.48550/arXiv.2103.06624
P. Warden. 2018. Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition. ArXiv e-prints (April
2018). arXiv:1804.03209 [cs.CL] https://arxiv.org/abs/1804.03209

Ross Wightman, Hugo Touvron, and Hervé Jégou. 2021. Resnet strikes back: An improved training procedure in timm.
arXiv preprint arXiv:2110.00476 (2021).

Haoze Wu, Omri Isac, Aleksandar Zelji¢, Teruhiro Tagomori, Matthew Daggitt, Wen Kokke, Idan Refaeli, Guy Amir,
Kyle Julian, Shahaf Bassan, et al. 2024. Marabou 2.0: a versatile formal analyzer of neural networks. In International
Conference on Computer Aided Verification. Springer, 249-264.

Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei Chang, Minlie Huang, Bhavya Kailkhura, Xue Lin, and
Cho-Jui Hsieh. 2020. Automatic perturbation analysis for scalable certified robustness and beyond. Advances in Neural
Information Processing Systems 33 (2020), 1129-1141. https://dl.acm.org/doi/10.5555/3495724.3495820

Huan Zhang, Shigi Wang, Kaidi Xu, Linyi Li, Bo Li, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter. 2022. General cutting
planes for bound-propagation-based neural network verification. Proceedings of the 36th International Conference on
Neural Information Processing Systems (2022). https://dl.acm.org/doi/10.5555/3600270.3600391

Duo Zhou, Christopher Brix, Grani A Hanasusanto, and Huan Zhang. 2024. Scalable Neural Network Verification
with Branch-and-bound Inferred Cutting Planes. arXiv preprint arXiv:2501.00200 (2024).

Feng Zhou and Fernando De la Torre. 2015. Generalized canonical time warping. IEEE transactions on pattern analysis
and machine intelligence 38, 2 (2015), 279-294.

Feng Zhou and Fernando Torre. 2009. Canonical time warping for alignment of human behavior. Advances in neural
information processing systems 22 (2009).

Tahereh Zohdinasab, Vincenzo Riccio, Alessio Gambi, and Paolo Tonella. 2021. DeepHyperion: exploring the feature
space of deep learning-based systems through illumination search. In Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 79-90. doi:10.1145/3460319.3464811

, Vol. 1, No. 1, Article . Publication date: September 2025.

https://doi.org/10.1007/978-3-030-81685-8_12
https://doi.org/10.1007/978-3-030-81685-8_12
https://docs.google.com/presentation/d/1ep-hGGotgWQF6SA0JIpQ6nFqs2lXoyuLMM-bORzNvrQ/edit?usp=sharing
https://docs.google.com/presentation/d/1ep-hGGotgWQF6SA0JIpQ6nFqs2lXoyuLMM-bORzNvrQ/edit?usp=sharing
https://dl.acm.org/doi/10.5555/3327345.3327533
https://dl.acm.org/doi/10.5555/3277203.3277323
https://dl.acm.org/doi/10.5555/3277203.3277323
https://doi.org/10.48550/arXiv.2103.06624
https://arxiv.org/abs/1804.03209
https://arxiv.org/abs/1804.03209
https://dl.acm.org/doi/10.5555/3495724.3495820
https://dl.acm.org/doi/10.5555/3600270.3600391
https://doi.org/10.1145/3460319.3464811

	Abstract
	1 Introduction
	2 From Local to Structural Robustness
	2.1 Local Robustness (LR)
	2.2 Structural Robustness (SR)
	2.3 Challenges and Approach Overview
	2.4 Illustration Example

	3 The VeriS Approach
	3.1 LPI Formulation
	3.2 LPV Formulation
	3.3 Optimization

	4 Experimental Design
	4.1 Verification Benchmarks
	4.2 Verifiers and Experimental Setup

	5 Results and Analysis
	5.1 RQ1: VeriS performances on LPI and LPV perturbations
	5.2 RQ2: Attacks and Patterns
	5.3 RQ3: Compatibility with Existing Verification Tools
	5.4 RQ4: Effectiveness of VeriS Optimizations
	5.5 RQ5: Comparison to Overapproximation Approaches

	6 Threats to Validity
	7 Related Work
	8 Conclusion and Future Work
	9 Data Availability
	References

