
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Verifying Structural Robustness of Deep Neural Network

ANONYMOUS AUTHOR(S)

Neural network verification has emerged as a useful technique for improving the reliability of deep learning
systems. Current verification approaches primarily focus on local robustness, where perturbations are applied
independently to each input element. Despite its common use, local robustness does not capture perturbations
that exhibit coordinated relationships between input elements. Such perturbations arise from systematic
transformations or filtering operations that preserve structural characteristics of the data. These perturbations,
which we call “structural robustness”, represent a significant gap in existing verification capabilities.

This work focuses on structural robustness verification by formalizing two important classes of structured
perturbations: linear position-invariant and linear position-varying. Those perturbations allow input elements
to be modified in coordinated ways while preserving essential data structure. The main challenge is that
structural perturbations cannot be directly expressed using standard interval-based specification formats that
existing verification tools typically support.

To address this limitation, we introduce VeriS, a technique that reformulates structural robustness into
standard local robustness problems by creating specialized subnetworks that encode perturbation behavior
and integrate them with the original network architecture. VeriS enables verification across continuous spaces
defined by structural robustness specifications while maintaining compatibility with existing verification tools.
VeriS also introduces optimizations that significantly enhance verification performance such as converting
complex operations into standard representations.

We implement and evaluate VeriS on benchmarks involving neural networks across three domains: image
classification, audio processing, and healthcare applications. Our evaluation, which encompasses 5508 verifica-
tion problems, demonstrates that VeriS successfully verifies 78% of structural robustness specifications when
integrated with state-of-the-art verification tools. These results show that VeriS enables the verification of
complex structural perturbations that were previously beyond the reach of existing neural network verification.

Additional Key Words and Phrases: neural network verification, structural robustness, local robustness

ACM Reference Format:
Anonymous Author(s). 2025. Verifying Structural Robustness of Deep Neural Network. 1, 1 (September 2025),
21 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction

Deep Neural Networks (DNNs) are increasingly being employed as components of mission-critical
systems across a range of application domains, including autonomous driving, medicine, and
infrastructure monitoring. As with traditional software, testing DNNs using rigorous coverage
criteria [10, 14, 24, 30, 33, 47, 56, 68] is necessary but not sufficient for critical deployments. To
provide further assurance, researchers have developed a wide range of techniques for verifying
that DNNs satisfy required properties. In recent years, many dozens of DNN verifiers have been
reported in the literature and a yearly competition has documented advances in the capabilities of
state-of-the-art DNN verifiers [2, 5, 6].

Among desired properties to evade adversarial attacks, robustness [3, 8, 39, 48] is a fundamental
property for DNNs that ensures consistent behavior when inputs undergo perturbations. Local

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM XXXX-XXXX/2025/9-ART
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: September 2025.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Anon.

robustness (LR) is a common formulation that requires small, arbitrary changes to individual input
elements, e.g., small noises added to each pixel of an image, do not affect the DNNpredictions [25, 29].
To check that a neural network satisfies LR, existing analyses [1, 8, 18, 21, 28, 29, 34, 38, 39, 57, 59]
define and encode LR specification using interval constraints that bound the perturbation added
to each input, e.g., 𝑥 = 𝑥 + 𝛿 where 𝛿 is a small noise bounded by an interval constraint. LR is
well-studied and can be solved efficiently by modern DNN verifiers [2, 6, 15, 16, 64, 65], and LR
benchmarks, e.g., image classification, made up a large portion of DNN verification evaluations [2,
5, 6].
Despite its simplicity and well-supported by existing work, LR does not capture real-world

perturbations that create interdependencies between input elements and require more complex
modifications than just adding noise to individual dimensions. For example, in image processing,
common transformations include spatial translation and scaling [49], which systematically shift or
resize pixel values rather than adding independent noise to each pixel. Scaling transformations
in images uniformly adjust pixel coordinates, creating a zoomed view while preserving the se-
mantic information, which should not affect a DNN’s classification. Likewise, in audio processing,
time-warping [11, 66] modifies playback speed without altering the essential acoustic content,
representing natural variations that are expected to maintain the DNN’s prediction.
In this work, we study robustness properties with two such types of perturbations that are

common in real-world applications: linear position-invariant (LPI), which applies the same trans-
formation across all input positions, e.g., filtering in audio processing and convolution in image
processing [49], and linear position-varying (LPV), which applies different transformations at differ-
ent input positions, e.g., time-warping in audio processing and spatial transformations in image
processing [11, 66]. We call them structural robustness (SR) properties, since they capture how
input data can change structurally while preserving input information. We introduce and formally
define SR properties, which generalize LR properties, by using a more expressive form that allows
a wide range of perturbations. Specifically, instead of adding small noise 𝛿 to each input element
independently as in LR, we define SR properties with a noise transformation matrix 𝑃 that captures
the desired perturbation operations such as translation, scaling, time-warping, and filtering. This
formulation allows analysis of new applications that require SR properties, e.g., classification with
spatial transformations and temporal distortions.
Next, because SR properties are more complex (e.g., the transformation matrix involves non-

linear operations) and not supported natively by DNN verification techniques, we introduce a
reformulation approach, VeriS, that reduces SR verification problems into specialized LR ones. This
process involves representing the structural perturbation as a new subnetwork that is prepended to
the original network, whereas structural perturbation strength is encoded as interval constraints.
The resulting network can then be verified using existing LR verification techniques.

Finally, for many SR transformations, the combined networks are larger and contain non-linear
activation functions that existing verifiers do not handle well. Thus, VeriS introduces optimizations
to improve the efficiency of verifying the new networks. For example, we show how to encode new
activation functions, e.g., absolute operations that are not commonly used in DNNs, using ReLU
operations that are well-supported by existing verifiers. VeriS also includes optimizations that
reduce the size of the new network, e.g., by merging layers and removing redundant operations.
We implement VeriS and evaluate it on a set of 5508 SR problems including neural networks

from three different domains (image classification, voice classification, and health monitoring). Our
results show that through the reformulation and optimizations from VeriS enable existing DNN
verifiers to solve 4289/5508 (78%) SR problems within a 60s timeout, while without VeriS none of
the SR problems can be directly solved by existing verifiers.

The key contributions of the paper lie in:

, Vol. 1, No. 1, Article . Publication date: September 2025.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Verifying Structural Robustness of Deep Neural Network 3

• We introduce and formalize LPI and LPV SR properties, which are more expressive than LR
and allow a wide range of perturbations. This enables new applications such as signal and
audio processing and richer types of image classification that require SR properties.
• We show how to encode SR properties as LR properties, enabling existing verifiers to verify
the considered SR properties. The main idea is to create a subnetwork that encodes the
structural perturbation and integrates it into the original network.
• We introduce optimizations including layer merging and activation function encoding that
allows existing verifiers to solve these new LR problems efficiently.
• We implement VeriS and evaluate it on 5508 SR problems from three different domains
(audio, health, and image classification). We show that existing verifiers, with the help of
VeriS, can effectively solve SR problems that were previously not considered and solved.

2 From Local to Structural Robustness

DNN Verification. Given a DNN 𝑁 and a property (or specification) 𝜙 , the DNN verification
problem asks if 𝜙 is a valid property of 𝑁 . Typically, 𝜙 is a formula of the form 𝜙𝑖𝑛 ⇒ 𝜙𝑜𝑢𝑡 , where
𝜙𝑖𝑛 is a property over the inputs of 𝑁 and 𝜙𝑜𝑢𝑡 is a property over the outputs of 𝑁 .

Modern DNN techniques [1, 15, 16, 19, 59, 62, 64, 65] treat this verification problem as a satisfia-
bility problem by encoding the DNN 𝑁 and the property 𝜙 as a logical formula:

𝑁 ∧ 𝜙𝑖𝑛 ∧ ¬𝜙𝑜𝑢𝑡 (1)

If Eq. 1 is unsatisfiable (UNSAT), the considered property holds. Otherwise, it is satisfiable (SAT)
and a counterexample exists that disproves the property.

2.1 Local Robustness (LR)

Existing DNN analyses mainly focus on LR properties1, defined as follows:

Definition 1 (Local Robustness). Given a neural network 𝑁 : R𝑑 → R𝑐 and an input 𝑥 ∈ R𝑑 ,
it is locally 𝜖-robust at 𝑥 with respect to norm ∥ · ∥𝑝 if:

∀𝑥, ∥𝑥 − 𝑥 ∥𝑝 ≤ 𝜖 =⇒ 𝑁 (𝑥) = 𝑁 (𝑥).

where 𝑑 is the input dimension, 𝑐 is the number of outputs, and ∥𝑥 − 𝑥 ∥𝑝 ≤ 𝜖 indicates that the
difference between the two points is within a certain (small) threshold 𝜖 .

This formulation treats each input dimension independently, allowing arbitrary element-wise
modifications as long as the overall perturbation magnitude remains bounded. Typically, the
perturbation space is defined by directly varying the input signal 𝑥 within an ℓ∞-ball:

𝑥 = 𝑥 + 𝛿 where ∥𝛿 ∥∞ ≤ 𝜖

Note that DNN verification mainly focuses on LR properties of ℓ∞ norm [2, 6, 15, 16, 25, 29, 64, 65].
More specifically, these work represent LR specifications using interval constraints, in which each
input dimension of DNN is bounded by a lower bound and upper bound. This approach is simple
and equivalent to ℓ∞ norm (𝑝 = ∞) in Def. 1.

1The literature also mentions about DNNs global robustness, which requires that network maintain a separation of width at
least 𝜖 (in input space) between any pair of regions that are assigned different prediction labels [31]. In other words, LR
specifies space around a specific point of interest, while global robustness specifies space for every input. However, global
robustness is often considered impractical as it is computationally intractable for continuous input spaces

, Vol. 1, No. 1, Article . Publication date: September 2025.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Anon.

Example. Assume we want to verify the DNN in Fig. 2a is locally 𝜖-robust at 𝑥 = [1.0, 2.0, 3.0, 4.0]
with respect to ℓ∞ norm with 𝜖 = 0.5. Then the interval constraints are:

∀𝑥1 ∈ [0.5, 1.5], 𝑥2 ∈ [1.5, 2.5], 𝑥3 ∈ [2.5, 3.5], 𝑥4 ∈ [3.5, 4.5] =⇒ 𝑁 (𝑥) = 𝑁 (𝑥)
where 𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4] is the perturbed input. This property ensures each input dimension is
changed by at most 0.5 from its original value (in other words, perturbed inputs are within a ℓ∞-ball
of radius 0.5 around the center 𝑥) will produce the same output as the original input 𝑥 .

2.2 Structural Robustness (SR)

LR properties do not capture perturbations that involve more complex interactions among input
elements. We thus introduce structural robustness (SR) properties that generalizes LR and considers
perturbations that affect the input in a structured manner.

In our observation from the literature [36, 40, 49], SR properties can be broadly categorized into
two classes: linear position-invariant (LPI) and linear position-varying (LPV) perturbations. LPI
specifications model systematic effects that apply uniformly across the entire input sequence, such
as global filtering operations or environmental factors that consistently affect all data elements.
Examples include lowpass and highpass filtering for audio signal processing [36] and blurring and
sharpening for image processing [49]. LPV specifications capture localized structural distortions
that vary depending on the position within the input sequence, such as timing variations or
position-dependent transformations that affect different parts of the data differently. Examples
include time-warping for time series data such as electrocardiogram (ECG) and audio [41, 50].

We formally define these two classes as follows:

Definition 2 (Linear Position-Invariant Perturbation). Given an input 𝑥 ∈ R𝑑 , a linear
position-invariant (LPI) perturbation, characterized by a matrix 𝑃 ∈ R𝑘 where 𝑘 ≤ 𝑑 , produces a
perturbed input 𝑥 ∈ R𝑑 through a convolution operation (∗):

𝑥 = 𝑃 ∗ 𝑥

Example. Assume we want to perturb 𝑥 = [1.0, 2.0, 3.0, 4.0] following LPI perturbation using
Echo kernel 𝑃 = [1.0, 0.0, 0.5]. The perturbed input 𝑥 can be computed as convolution of 𝑃 and 𝑥 :

𝑥 = [1.0, 0.0, 0.5]︸ ︷︷ ︸
𝑃

∗ [1.0, 2.0, 3.0, 4.0]︸ ︷︷ ︸
𝑥

= [1.0, 2.5, 4.0, 3.0]

The input 𝑥 is padded with 0.0 to the left and right to make output length of 𝑥 is the same as 𝑥 .

Definition 3 (Linear Position-Varying Perturbation). Given an input 𝑥 ∈ R𝑑 , a linear
position-varying (LPV) perturbation, characterized by a matrix 𝑃 ∈ R𝑑×𝑑 where each row of 𝑃 adds
up to 1, produces a perturbed input 𝑥 ∈ R𝑑 through a linear operation:

𝑥 = 𝑃𝑥𝑇

Example. Assume we want to perturb 𝑥 = [1.0, 2.0, 3.0, 4.0] following LPV perturbation using
Sinusoidal offset 𝑐 = [0.0, 2.0, 0.0,−2.0]. The perturbed input 𝑥 can be computed as:

𝑥 =


1.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0
0.0 0.0 1.0 0.0
0.0 1.0 0.0 0.0

︸ ︷︷ ︸
𝑃


1.0
2.0
3.0
4.0

︸︷︷︸
𝑥𝑇

= [1.0, 4.0, 3.0, 2.0]𝑇

where the matrix 𝑃 is constructed from the offset 𝑐 as shown in Eq. 6.

, Vol. 1, No. 1, Article . Publication date: September 2025.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Verifying Structural Robustness of Deep Neural Network 5

0 20 40 60

Sample

−1

0

1

2

A
m

p
lit

u
d

e

raw

highpass

lowpass

echo

(a) Position-invariant perturbation.

0 20 40 60

Sample

−1

0

1

2

A
m

p
lit

u
d

e

raw

linear

gaussian

sinusoidal

(b) Position-varying perturbation.

Fig. 1. Differences between LPI and LPV perturbations using different perturbation types.

Fig. 1, which are the same types of filters as shown in the examples above, illustrates the
differences between LPI and LPV used in signal processing. Fig. 1a shows lowpass and highpass
perturbations that can bemodeled using LPI perturbations, while Fig. 1b shows the LPV perturbation
with different types representing Gaussian and sinusoidal methods. The key distinction is that
LPI perturbations alter data characteristics (e.g., amplitude, shape, etc.) while LPV perturbations
capture dynamic structural distortions and preserve local data characteristics. Due to uniform
effects, LPI is often used in signal processing applications (because filters affect signals consistently)
and image processing applications (because transformations affect images uniformly), while LPV is
often used in time series analysis (because patterns vary locally).

Assumptions. For LPI, we assume 𝑃 is scaling proportionally to 𝑧 and for LPV, we assume 𝑐
is changing proportionally to 𝑧. In other words, the perturbation space represented by VeriS
formulation might not contain some patterns that values of 𝑃 (or 𝑐) varies arbitrarily. One solution
is to use more than one variable [𝑧1, 𝑧2, . . . , 𝑧𝑛] to control the values of 𝑃 separately. However, this
approach does not guarantee some constraints among values of 𝑃 (e.g., summing to 1) and might
return some spurious solutions as encountered in [37].

2.3 Challenges and Approach Overview

SR can capture more complex and realistic perturbations than LR, but verifying SR properties
presents two fundamental challenges that prevent the direct application of existing DNN verifiers.
We address them through a two-step process: (i) reformulating SR properties into LR ones and (ii)
optimizing the unique structure of the reformulated problems to make them more amenable to
existing verifiers.

2.3.1 Challenge 1: Reformulation. LR properties can be formulated using interval constraints to
represent the bounded ranges for additive noise 𝛿 and therefore are supported by existing DNN
verifiers. In contrast, SR creates interdependencies between input elements (e.g., summation of
each row of 𝑃 to 1) and cannot be represented by intervals, and therefore are not supported by any
existing verification tools.

To address this challenge, VeriS reformulates SR specifications in two steps (i) creating a pertur-
bation network and (ii) integrating it into the original network. From the given SR specification,
VeriS creates a new perturbation function 𝑃𝑧 that represents a series of linear and non-linear

, Vol. 1, No. 1, Article . Publication date: September 2025.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Anon.

functions. The operations in 𝑃𝑧 also vary with respect to a single variable 𝑧 ∈ [0, 1] that controls
how the perturbation is applied.

Next, VeriS represents 𝑃𝑧 as a perturbation network and prepend it into the original network to
create a new network 𝑁 ◦ 𝑃𝑧 to be verified. Fig. 2 shows an example of a DNN with 4 inputs and its
modified version with a prepended perturbation network 𝑃𝑧 and on input 𝑧 that controls how the
perturbation is applied.
Thus, VeriS transformed the original SR problem (𝑁, 𝑃𝑧) into an LR one (𝑁 ◦ 𝑃𝑧, 𝜙), where the

property 𝜙 is defined as:

𝜙 ≡ ∀𝑧 ∈ [0, 1] =⇒ (𝑁 ◦ 𝑃𝑧) (𝑧) = 𝑁 (𝑥) (2)

Thus, 𝜙 is an LR and asks whether the network 𝑁 ◦ 𝑃𝑧 produces the same classification result as
the original network 𝑁 on input 𝑥 for all possible perturbations done to 𝑥 as controlled by 𝑧.

2.3.2 Challenge 2: Optimizations. While the newly formed LR problem can now be run by existing
verifiers, it is quite unique and complex (e.g., with non-linear operations in the perturbation network
𝑃𝑧). Existing DNN verifiers was never designed for this kind of LR problem and in fact was not able
to solve any benchmark problem of this form (e.g., in §5.4).
To address this limitation, we develop two new optimization techniques that enhance the

verification process. First, VeriS combines multiplication and addition into a single FC layer to
simplify the perturbation subnetwork 𝑃𝑧 , making it easier to reason about. Second, VeriS transforms
absolute operations (e.g., |𝑥 |, which is not a standard activation function and thus verifiers, or
more specifically, abstraction domains used by verifiers, are not optimized to handle and become
imprecise over large network) into an equivalent standard ReLU activation that existing verifiers are
more comfortable with. These optimizations make the perturbation subnetwork 𝑃𝑧 more compatible
with existing DNN verifiers (e.g., all verifiers are optimized to support FC layer and ReLU natively).

2.4 Illustration Example

Consider an example where we have a simple network 𝑁 with 4 inputs and 2 outputs as shown
in Fig. 2a. We want to verify its SR on the input 𝑥 = [1.0, 2.0, 3.0, 4.0] when it is perturbed.
For illustration, we use a time-warping perturbation, a transformation often used in time series
based applications like signal processing and audio [36, 66] that shifts each input by an offset
and compresses or stretches the input sequence. Assume the perturbation is characterized by
an offset array 𝑐 = [0.2,−1.3, 0.4,−1.2]. For example, after the perturbation we might have 𝑥 =

[1.2, 0.7, 3.4, 2.8] if we apply the full offset. Of course, this is only one possible perturbed input,
and we want to verify 𝑁 is robust for all possible perturbed inputs that can be generated by this
time-warping perturbation.

Reformulation. VeriS converts the given SR problem into an LR one as follows. First, it represents
the perturbation as a small subnetwork 𝑃𝑧 , which can also be interpreted as a function, that takes a
single input 𝑧 ∈ [0, 1] to control how the perturbation is applied. For example, if 𝑧 = 0, then no
perturbation, and if 𝑧 = 1, then the full offset 𝑐 is applied. To construct 𝑃𝑧 , VeriS uses a generic
interpolation function𝜓 (𝑘) = max{0, 1 − |𝑘 |} [40, 49] to compute the weighted sum (𝜓 (𝑘) ensures
that the weights are between 0 and 1) and shifted the inputs using operations including additions
and multiplications (e.g., 1.0 + 0.2𝑧, 3.0 + 0.4𝑧), and absolute functions (e.g., |1 − 1.3𝑧 |). For this

, Vol. 1, No. 1, Article . Publication date: September 2025.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Verifying Structural Robustness of Deep Neural Network 7

𝑥1

𝑥2

𝑥3

𝑥4

ℎ11

ℎ12

ℎ21

ℎ22

𝑦1

𝑦2

𝑁

(a) Original network

𝑧

𝑝00

𝑝01

𝑝02

𝑝03

1.0

1.0

3.0

1.0

| · |

| · |

𝑝10

𝑝11

𝑝12

𝑝13

0.0

1.0

0.0

3.0

ℎ10

ℎ11

ℎ20

ℎ21

𝑦0

𝑦1

0.2

−1.3
0.4
−1.2

1.0

1.0

1.0

1.0

𝑃𝑧 𝑁

(b) Perturbed network

Fig. 2. A new network 𝑁 ◦ 𝑃𝑧 with 𝑥 = [1.0, 2.0, 3.0, 4.0] and 𝑐 = [0.2,−1.3, 0.4,−1.2].

example, the fully constructed 𝑃𝑧 is

𝑃𝑧 =


1.0 − 0.2𝑧 0.2𝑧 0.0 0.0

1.0 − |1.0 − 1.3𝑧 | |1.0 − 1.3𝑧 | 0.0 0.0
0.0 0.0 1.0 − 0.4𝑧 0.4𝑧
0.0 0.0 1.0 − |1.0 − 1.2𝑧 | |1.0 − 1.2𝑧 |

︸ ︷︷ ︸
𝑃


1.0
2.0
3.0
4.0

︸︷︷︸
𝑥𝑇

=


1.0 + 0.2𝑧

1.0 + |1.0 − 1.3𝑧 |
3.0 + 0.4𝑧

3.0 + |1.0 − 1.2𝑧 |


VeriS represents 𝑃𝑧 as a subnetwork parameterized by a single input 𝑧 and operations including

multiplications and additions represented as weights and biases, and absolute functions represented
as activation functions, as shown in Fig. 2b. The new problem is now LR as shown Eq. 2 which
checks if 𝑁 ◦𝑃𝑧 produces the same output as the original network 𝑁 on input 𝑥 for all perturbations
parameterized by 𝑧.

Optimizations. While existing DNN verifiers can now run the new LR problem, they could not
solve it because of the complexity of the subnetwork 𝑃𝑧 , e.g., absolutes are non-standard nonlinear
activation functions that are difficult to analyze. To address this challenge, VeriS applies two
optimizations to simplify 𝑃𝑧 architecture. VeriS first combines the multiplication and addition into
a single fully-connected (FC) layer (instead of multiple layers in the original 𝑃𝑧 subnetwork). For
example, VeriS simplifies the following equation into a single FC layer:

1.0 + 0.2𝑧
1.0 − 1.3𝑧
3.0 + 0.4𝑧
1.0 − 1.2𝑧

 = 𝑧
[
0.2 −1.3 0.4 −1.2

]𝑇︸ ︷︷ ︸
𝑊

+


1.0
1.0
3.0
1.0

︸︷︷︸
𝑏

= 𝐿𝑖𝑛𝑒𝑎𝑟𝑊,𝑏 (𝑧)

Next, VeriS converts the absolute function (e.g., |1 − 1.3𝑧 |) into a series of standard ReLU
activation functions, which are natively supported by existing verifiers.

|1 − 1.3𝑧 | = 𝑅𝑒𝐿𝑈 (1 − 1.3𝑧) + 𝑅𝑒𝐿𝑈 (−(1 − 1.3𝑧)) (3)

After these optimizations, we have a simpler perturbation subnetwork 𝑃𝑧 that consists of only
FC layers and ReLU activations, which are well-supported by existing verifiers. For the running
example, which originally was not solvable by existing verifiers, is now easily solved them (proven
valid by both the 𝛼𝛽-Crown [59, 64, 65] and by NeuralSat [15, 16] verifiers).

We describe the general VeriS algorithmic approach in the next section §3 and evaluate it in §5.

, Vol. 1, No. 1, Article . Publication date: September 2025.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Anon.

Alg. 1: VeriS Verification Framework
input :DNN 𝑁 , input 𝑥 , structural robustness 𝑆𝑅 (𝑃 for LPI or 𝑐 for LPV), verifier 𝑉
output :Verification result: sat, unsat, or timeout
// Step 1: Construct perturbation subnetwork 𝑃𝑧

1 if 𝑆𝑅 ≡ LPI then // LPI perturbation subnetwork construction (§3.1)
2 𝑊 ← 𝑃 ∗ 𝑥 − 𝑥 ; // Construct weight matrix Eq. 5

3 𝑏 ← 𝑥 ; // Construct bias vector Eq. 5

4 𝑃𝑧 ← Linear𝑊,𝑏 ; // Perturbation subnetwork construction

5 else if 𝑆𝑅 ≡ LPV then // LPV perturbation subnetwork construction (§3.2)
6 𝜓 (𝑥) ← 𝑅𝑒𝐿𝑈 (1 − 𝑅𝑒𝐿𝑈 (𝑥) − 𝑅𝑒𝐿𝑈 (−𝑥)) ; // Convert operator optimization §3.3

7 𝑃𝑧 ← Linear𝑥,0 ◦𝜓 ◦ Sub𝑗 ◦ Linear𝑐,𝑖 ; // Perturbation subnetwork construction

// Step 2: Formulate verification problem

8 𝑀 ← 𝑁 ◦ 𝑃𝑧 ; // Construct perturbed network

9 𝜙 ← ∀(𝑧) ∈ [0, 1] : 𝑀 (𝑧) = 𝑁 (𝑥) ; // Formulate verification property

// Step 3: Verify the verification property 𝜙

10 return 𝑉 (𝜙) ; // Invoke oracle verifier 𝑉

3 The VeriS Approach

Alg. 1 presents the high-level workflow of VeriS’s verification approach, which transforms SR
verification problems into standard LR ones that existing tools can handle directly. The algorithm
takes as inputs the target DNN 𝑁 , an input 𝑥 , a SR specification (either LPI characterized by 𝑃
or LPV characterized by 𝑐), and an oracle verifier 𝑉 . The algorithm returns possible verification
outcomes: (1) solved (either sat meaning violation found or unsat meaning property verified), or
(2) unsolved (unknown as runtime limit exceeded or an error occurred such as out-of-memory or
implementation issue).
First, VeriS constructs a perturbation subnetwork 𝑃𝑧 that encodes the SR specification (line 1-

line 7). For LPI specifications, the VeriS computes weight𝑊 and bias 𝑏 from the perturbation
parameters and given input, then creates a single FC layer Linear𝑊,𝑏 that represents the desired
perturbation (line 4) as explained in §3.1. For LPV specifications, the VeriS constructs a multi-layer
subnetwork (e.g., FC and ReLU layers, see §3.2) that models the perturbation (line 7). This step also
employs several optimization techniques to further improve the verification performance (see §3.3).
Next, VeriS transforms the SR problem into an LR one by combining the original network 𝑁

with the perturbation subnetwork 𝑃𝑧 to create a perturbed network𝑀 ≡ 𝑁 ◦ 𝑃𝑧 (line 8), with one
single input 𝑧 that controls the perturbation. The problem 𝜙 now is an LR and specifies that for all
𝑧 ∈ [0, 1], the𝑀’s output must match the 𝑁 ’s output on the original input 𝑥 (line 9).

VeriS invokes the oracle verifier 𝑉 to solve the formulated problem 𝜙 (line 10). Note that VeriS
applies optimizations to simplify the networks being checked and make them compatible with
existing verification tools. Moreover, VeriS uses LR representation to represent SR specification,
reduces the number of input dimensions to 1, thus, making problems more manageable.

3.1 LPI Formulation

To model LPI perturbations, VeriS uses Def. 2 employs standard convolution operations to naturally
represent uniform transformations across input. This formulation ensures the same transformation
applies consistently across all positions.

To verify SR problem of different variants of noise matrix 𝑃 for LPI specification, VeriS converts
the convolution transformation to a perturbation subnetwork 𝑃𝑧 taking as input a single variable

, Vol. 1, No. 1, Article . Publication date: September 2025.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Verifying Structural Robustness of Deep Neural Network 9

𝑧

𝑝1

𝑝2

.

.

.

𝑝𝑛

ℎ11

.

.

.

ℎ1𝑛

ℎ21

.

.

.

ℎ2𝑛

𝑦1

.

.

.

𝑦𝑛

𝑃𝑧 𝑁

Fig. 3. LPI perturbation subnetwork construction.

𝑧 ∈ [0, 1]. The 𝑃𝑧 is constructed to satisfy two essential properties: when 𝑧 = 0, the transformation
reduces to the identity operation (no perturbation), andwhen 𝑧 = 1, it applies the target perturbation.
Formally, 𝑃𝑧 for LPI specification is formulated as:

𝑃𝑧 = 𝑧 · 𝑃 ∗ 𝑥 + (1 − 𝑧) · 𝑥 = 𝑧 · (𝑃 ∗ 𝑥 − 𝑥) + 𝑥 (4)

This linear interpolation between the original input 𝑥 and the fully perturbed input 𝑃 ∗ 𝑥 creates
smooth and valid variation across the perturbation space.
To integrate the 𝑃𝑧 into the original DNN being checked, VeriS leverages the fact that 𝑃 ∗ 𝑥

produces a fixed outcome given the input 𝑥 and the perturbation matrix 𝑃 being checked. The
perturbation subnetwork 𝑃𝑧 can then be transformed to a standard FC layer Linear𝑊,𝑏 with weight
matrix𝑊 and bias 𝑏 as follows:

𝑃𝑧 = 𝑧𝑊
𝑇 + 𝑏 = Linear𝑊,𝑏 (𝑧) (5)

where𝑊 = 𝑃 ∗ 𝑥 − 𝑥 and 𝑏 = 𝑥 .
Fig. 3 illustrates the construction of the 𝑃𝑧 . This formulation uses a FC layer, which are univer-

sally supported by all DNN verification tools as the most fundamental layer in DNNs. While the
underlying operations (multiplication and addition) appear simple, expressing them as a standard
linear layer ensures broad compatibility across verification frameworks, as not all tools support
standalone arithmetic operations.

3.2 LPV Formulation

Similar to LPI perturbations, VeriS uses Def. 3 to systematically model LPV perturbations, which
employs interpolation-based transformations that redistribute input values across neighboring
positions. VeriS can essentially model various types of LPV perturbations by constructing the
noise matrix 𝑃 using different interpolation𝜓 , where each specific perturbation type requires its
own mathematical characterization. As a concrete example, this work demonstrates the approach
using time-warping [11, 66], which has been widely used in practice [27, 36, 41, 50, 66, 67]. The
time-warping formulation constructs the noise matrix 𝑃 using two parameters: offset matrix 𝑐 and
interpolation function𝜓 . The offset matrix 𝑐 determines the offset weights of input elements, and
𝜓 determines the weight distribution between adjacent positions while ensuring weights remain
between 0 and 1.

VeriS uses a generic interpolation𝜓 (𝑘) = max{0, 1 − |𝑘 |} widely used in literature [40, 49] and
varies the offset 𝑐 by scaling it by 𝑧, denoted as 𝑐𝑧 = 𝑧 · 𝑐 . Formally, the noise matrix 𝑃 for LPV
specification is defined element-wise as:

𝑃 [𝑖, 𝑗] = 𝜓 (𝑖 + 𝑧 · 𝑐 [𝑖] − 𝑗) (6)

, Vol. 1, No. 1, Article . Publication date: September 2025.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Anon.

𝑧

𝑝11

𝑝12
.
.
.

𝑝1𝑛

𝑆𝑢𝑏1

𝑆𝑢𝑏2

.

.

.

𝑆𝑢𝑏𝑛

𝜓

𝜓

.

.

.

𝜓

𝑥

ReLU

−𝑥 ReLU

+ 1 − 𝑥 ReLU

𝑝21

𝑝22
.
.
.

𝑝2𝑛

ℎ11
.
.
.

ℎ1𝑛

ℎ21
.
.
.

ℎ2𝑛

𝑦1

.

.

.

𝑦𝑛

𝑃𝑧 𝑁

Fig. 4. LPV perturbation subnetwork construction.

Intuitively, 𝑃 [𝑖, 𝑗] captures the weights of the neighboring positions 𝑗 to the perturbed position 𝑖 .
Moreover, with this construction, 𝑃 becomes the identity matrix when 𝑧 = 0, and target perturbation
matrix when 𝑧 = 1, thus ensuring the desired properties of the perturbation subnetwork 𝑃𝑧 .
For a given input 𝑥 and offset 𝑐 , the perturbation subnetwork 𝑃𝑧 for LPV specification is con-

structed through a sequence of operations as:

𝑃𝑧 = 𝑃𝑥
𝑇 = Mul𝑥 ◦𝜓 ◦ Sub𝑗 ◦ Add𝑖 ◦Mul𝑐 (𝑧) (7)

This operation sequence implements exactly Eq. 6 through a series of computational steps. Starting
with parameter 𝑧, the operations compute (𝑖 + 𝑧 · 𝑐 [𝑖] − 𝑗) for all pairs of indices 𝑖 and 𝑗 . The Mul𝑐
and Add𝑖 operations together compute (𝑖 + 𝑧 · 𝑐 [𝑖]) for each position 𝑖 . Then Sub𝑗 subtracts each 𝑗
to produce the full matrix of differences. Finally, 𝜓 converts these differences into interpolation
weights, and Mul𝑥 applies them to input 𝑥 . Fig. 4 illustrates in detail the construction of the
perturbation subnetwork 𝑃𝑧 .

Compare to LPI perturbations in Eq. 5, the LPV perturbation subnetwork in Eq. 9 is more complex
and involves more non-linear functions (e.g., absolute operation from𝜓) that are generally more
challenging for verification tools.

3.3 Optimization

VeriS also introduces several optimization techniques to further improve the verification perfor-
mance. The construction of the perturbation subnetwork 𝑃𝑧 involves several non-linear functions,
such as absolute function (| · |), which is generally not well-supported or not well-optimized
by existing verification tools (e.g., 𝛼𝛽-Crown [64] and NeuralSat [15] fail miserably). To cope
with this issue, VeriS introduces two optimization techniques to further improve the verification
performance. We give a detailed description of the optimization techniques below.

3.3.1 Merging Linear Operations. In Eq. 7 the perturbation subnetwork 𝑃𝑧 is built through a
sequence of operations as:

𝑃𝑧 = 𝑃𝑥
𝑇 =

Linear𝑥,0︷︸︸︷
Mul𝑥 ◦𝜓 ◦ Sub𝑗 ◦

Linear𝑐,𝑖︷ ︸︸ ︷
Add𝑖 ◦Mul𝑐 (𝑧)︸ ︷︷ ︸
𝑃

(8)

, Vol. 1, No. 1, Article . Publication date: September 2025.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Verifying Structural Robustness of Deep Neural Network 11

𝑥

𝑦

𝑙𝑥 𝑢𝑥0

(a) 𝑦 = 𝑅𝑒𝐿𝑈 (𝑥)

𝑥

𝑦

𝑙𝑥 𝑢𝑥0

(b) 𝑦 = |𝑥 |

𝑥

𝑦

𝑙𝑥 𝑢𝑥0

(c) 𝑦 = 𝑅𝑒𝐿𝑈 (𝑥) + 𝑅𝑒𝐿𝑈 (−𝑥)

Fig. 5. Abstractions of ReLU and absolute function over 𝑥 ∈ [𝑙𝑥 , 𝑢𝑥].

The combination of scaling Mul𝑐 and addition Add𝑖 operations can be implemented as a standard
FC layer Linear𝑐,𝑖 (e.g., weight 𝑐 and bias 𝑖), while the Mul𝑥 can be converted to another FC layer
Linear𝑥,0 (e.g., weight 𝑥 and zero bias). Therefore, the perturbation subnetwork 𝑃𝑧 is converted to:

𝑃𝑧 = Linear𝑥,0 ◦𝜓 ◦ Sub𝑗 ◦ Linear𝑐,𝑖 (𝑧) (9)

These simplifications make the perturbation subnetwork more compatible with existing DNN
verifiers as FC is the most fundamental layer in DNNs reasoning. This also leverages the fact that
existing DNN verifiers analyze the network layer by layer, so Linear counts as one layer while
combining Mul and Add counts as 2, thus reducing the workload for verifiers.

3.3.2 Transforming Non-Linear Operations. The perturbation subnetwork 𝑃𝑧 in Eq. 9 involves a
non-linear interpolation function𝜓 , containing the absolute (| · |). The absolute function is not a
standard activation function and thus verifiers, or more specifically, abstraction domains used by
verifiers, are not optimized to handle and become imprecise over large networks.

Fig. 5 illustrates the polytope abstractions for different cases. Fig. 5a shows one typical method
to abstract ReLU [63] and Fig. 5b shows the abstraction for absolute function over 𝑥 ∈ [𝑙𝑥 , 𝑢𝑥],
demonstrating the imprecision of the abstraction for absolute function. Fig. 5c shows the abstraction
for combining 𝑅𝑒𝐿𝑈 (𝑥) and 𝑅𝑒𝐿𝑈 (−𝑥), which is equivalent to absolute function. Though it requires
two separate abstractions for ReLU, it is more accurate than the abstraction for absolute function.
Moreover, the abstraction of absolute function occurs early in the perturbed network (within the
perturbation subnetwork 𝑃𝑧), the imprecision accumulates through out the entire network, making
verifiers unable to solve the problem. More importantly, ReLU is common and well-optimized by
verifiers, therefore, it scales much better than absolute function.

To cope with this issue, VeriS transforms the absolute operator into a standard ReLU activation
function in a semantic-preserving manner. In particular, the absolute can be transformed into
|𝑥 | = 𝑅𝑒𝐿𝑈 (𝑥) + 𝑅𝑒𝐿𝑈 (−𝑥), and the interpolation function𝜓 in Eq. 9 can be transformed to:

𝜓 (𝑥) = max{0, 1 − |𝑥 |} = 𝑅𝑒𝐿𝑈 (1 − 𝑅𝑒𝐿𝑈 (𝑥) − 𝑅𝑒𝐿𝑈 (−𝑥)) (10)

This transformation ensures that the absolute operation is preserved while being making existing
DNN verifiers more comfortable with.

4 Experimental Design

We evaluate VeriS using the following research questions:
RQ1 (§5.1): How does VeriS perform on LPI and LPV perturbations?
RQ2 (§5.2): How does VeriS show robustness and vulnerability patterns?
RQ3 (§5.3): How compatible is VeriS with existing verification tools?
RQ4 (§5.4): How does optimization impact VeriS’s performance?

, Vol. 1, No. 1, Article . Publication date: September 2025.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Anon.

Tab. 1. Benchmark instances.

Task Network Type Model SR Params Neurons Problems

KWS FC + CNN + Pooling + ReLU
M3 LPI 39K 41K 540

LPV 47K 48M 540

M5 LPI 52K 41K 540
LPV 60K 48M 540

ECG FC + CNN + Pooling + ReLU
M3 LPI 36K 27K 432

LPV 42K 22M 432

M5 LPI 49K 28K 432
LPV 54K 22M 432

Image
FC + CNN + ReLU Oval21 LPI 112K 3K 540

FC + ResNet + CNN + ReLU Sri_Resnet_A LPI 360K 11K 540
FC + ResNet + CNN + ReLU Cifar100 LPI 2.5M 55K 540

Total 7 5508

RQ5 (§5.5): How do structural perturbations compare to over-approximation approaches?

4.1 Verification Benchmarks

We use three domains to answer the RQs: (i) Keyword Spotting (KWS) for voice command recog-
nition [audio], (ii) ECG classification for cardiac rhythm monitoring [health], and (iii) image and
object recognition [image].

Network Datasets. Tab. 1 shows our networks, which comprise both domain-specific trained
models and standard benchmark networks used in the literature and competitions [5] For KWS
and ECG, we train M3 and M5 networks [12] which are deep CNNs for raw waveforms prediction
task. We vary the number of channels for convolution layers in these networks to 32 and 64.
We train KWS networks using the Google Speech Commands dataset [60], focusing on short
utterances (approximately 1 second) of common voice commands recorded under diverse acoustic
conditions. For ECG networks, we use the CardiacArrhythmia dataset [26], which provides cardiac
rhythm data across four distinct arrhythmia classes. For image classification, we use pre-trained
networks from recent VNN-COMPs [2, 5, 6]. These networks include Oval21, Sri_Resnet_A, and
Cifar100 architectures, providing diverse baselines for evaluating structural robustness verification
on computer vision tasks.

SR Specifications. Our benchmarks include both LPI and LPV perturbations across various per-
turbation levels and transformation configurations. For LPI specifications, we construct verification
instances by defining specific kernels, e.g., Echo, Low-pass, and High-pass filters for audio and
health domains, and Motion Blur kernels for image data. The perturbation space spans multiple
kernel sizes and 𝑧 ∈ {[0.0, 0.1], [0.0, 0.5], [0.0, 1.0]} to capture diverse modification patterns.

LPV perturbations employ varying position matrices 𝑐 defined by Linear, Sinusoidal, and Gauss-
ian coefficient patterns with three lower intensity levels 𝑧 ∈ {[0.0, 0.1], [0.0, 0.2], [0.0, 0.3]}. Due to
the increased computational complexity inherent in LPV specifications, we employ these moder-
ate perturbation intensities to ensure reasonable verification times while maintaining sufficient
robustness assessment coverage.

, Vol. 1, No. 1, Article . Publication date: September 2025.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Verifying Structural Robustness of Deep Neural Network 13

Tab. 1 presents the benchmark statistics across all evaluation domains. The resulting benchmark
contains 5508 problems that span diverse networks of sizes from 3K to 48M neurons. Note that
we also list the number of neurons in addition to network parameters since the complexity of
verification often depends on the number of neurons.

4.2 Verifiers and Experimental Setup

DNN Verifiers. We experiment VeriS using 𝛼𝛽-Crown [64, 65] and NeuralSat [15, 16], the
two top performers in the recent VNN-COMP competitions. 𝛼𝛽-Crown has been consistently
the winner in VNN-COMPs while NeuralSat is a new comer that ranked 2nd back-to-back in
VNN-COMPs’24 [5] and ’25 [55].

State-of-the-art DNN verifiers typically employ Branch-and-Bound (BaB) algorithm [7], in which
“branch” refers to either neuron splitting or input splitting strategies to determine unsatisfiability or
counterexamples. The former splits the hidden neuron boundaries during verification and performs
abstraction to estimate bounds. The latter is often invoked on networks with low input dimensions,
splitting the input space (instead of neurons) into smaller subspaces. For 𝛼𝛽-Crown, we use two
different variants: neuron splitting 𝛼𝛽-Crown (N) and input splitting 𝛼𝛽-Crown (I). We use the
default setting of NeuralSat as it automatically determines and switches between neuron and
input splitting based on the input problem.

Experimental Envionment. Our experiments were run on a Linuxmachinewith an Intel(R) Xeon(R)
8-core 2.20GHz CPU, 32GB RAM, and an NVIDIA L4 GPU with 24 GB VRAM.

We borrowed the timeout setting from recent VNN-COMPs [5, 6] which allows up to 6 hours per
benchmark. For example, for the KWS M3 benchmark, the timeout can be up to 6× 3600/1080 = 20
seconds per instance. To compensate for differences in platforms (CPU and GPU) used for evaluation,
we settled down the timeout for each problem instance to 30 seconds for LPI instances and 60
seconds for LPV instances due to the increased complexity.

5 Results and Analysis

5.1 RQ1: VeriS performances on LPI and LPV perturbations

LPI Specifications. Tab. 2 presents the LPI verification performance of VeriS (used with the
NeuralSat tool) when applied to KWS/ECG tasks with three different filters (Lowpass, Echo, and
Highpass) and Image task under motion blur perturbations across three blur angles (0, 45, and 90
degrees). Overall, VeriS was able to solve 3342/3564 problems (94%).

Among the three tasks, ECG has a higher number of timeout instances (128 instances) compared
to KWS (29 instances) and Image (65 instances). This difference can be attributed to the distinct
characteristics of each data type. ECG signals are relatively unstructured, and filtering operations
significantly alter the signal characteristics, creating diverse perturbation spaces that are challenging
to verify. In contrast, KWS and image data havemore structured representations that are less affected
by filtering operations. Images maintain visual coherence after filtering, and audio signals remain
interpretable for keyword recognition even when perturbed. Finally, and unsurprisingly, when the
range of perturbation intensity 𝑧 increases, the search space increases (e.g., 𝑧 ∈ [0.0, 0.1]vs.[0.0, 1.0]),
and the number of solved instances decreases.

LPV Specifications. Tab. 3 shows that LPV problems are more challenging, with a total of 947/1944
(49%) solved instances in total. This performance degradation is expected since the networks of
LPV perturbations with prepended subnetworks have many more neurons (e.g., 48M) compared to
LPI ones (e.g., 41K). Still, despite the additional complexity for representing LPV characteristics,

, Vol. 1, No. 1, Article . Publication date: September 2025.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Anon.

Tab. 2. Results on LPI (solved/unsolved)

Task z Lowpass Echo Highpass

ECG

[0.0, 0.1] 86/10 86/10 81/15

[0.0, 0.5] 78/18 79/17 75/21

[0.0, 1.0] 86/10 75/21 90/6

KWS

[0.0, 0.1] 120/0 120/0 120/0

[0.0, 0.5] 120/0 113/7 117/3

[0.0, 1.0] 116/4 108/12 117/3

Total 606/42 581/67 600/48

Task z Blur 0 Blur 45 Blur 90

Image

[0.0, 0.1] 180/0 180/0 180/0

[0.0, 0.5] 177/3 163/17 179/1

[0.0, 1.0] 162/18 172/8 162/18

Total 519/21 515/25 521/19

Tab. 3. Results on LPV (solved/unsolved)

Task z Linear Sinusoidal Gaussian

ECG

[0.0, 0.1] 85/11 73/23 82/14

[0.0, 0.2] 79/17 59/37 65/31

[0.0, 0.3] 66/30 23/73 35/61

KWS

[0.0, 0.1] 112/8 80/40 89/31

[0.0, 0.2] 41/79 16/104 23/97

[0.0, 0.3] 18/102 0/120 1/119

Total 401/247 251/397 295/353

Tab. 4. Results on LPI (unsat/sat/timeout)

Task 𝑧 ∈ [0.0, 0.1] 𝑧 ∈ [0.0, 0.5] 𝑧 ∈ [0.0, 1.0]

KWS 360/0/0 349/1/10 296/45/19

Image 523/17/0 374/145/21 202/294/44

ECG 248/5/35 153/79/56 77/174/37

Tab. 5. Results on LPV (unsat/sat/timeout)

Task 𝑧 ∈ [0.0, 0.1] 𝑧 ∈ [0.0, 0.2] 𝑧 ∈ [0.0, 0.3]

KWS 281/0/79 80/0/280 19/0/341

ECG 240/0/48 203/0/85 124/0/164

VeriS was able to solve 49% of LPV problems, which is significant given the novelty and difficulty
of LPV verification that was not possible before.

A closer look reveals that VeriS performs on Linear problems better than Sinusoidal and Gaussian
ones across all tasks and all perturbation configurations. This is due to Linear slightly perturbs
the input compared to Sinusoidal and Gaussian (see Fig. 1b). More specifically, Linear marginally
changes the input and creates a smaller perturbation space, in which the verification problems are
easier to solve. On the other hand, Sinusoidal and Gaussian drastically alter the input, resulting in
a larger perturbation space and thus their problems become harder to verify.

5.2 RQ2: Attacks and Patterns

The main goal of robustness verification is to show whether a network is robust or vulnerable to
(adversarial) attacks. The results in §5.1 give the overall performance of VeriS and here we look
closer into the results to determine vulnerable patterns and robustness of the networks. Recall
that DNN verification tools return either unsat (the property is verified), sat (a counterexample is
found, i.e., an adversarial example), or timeout (the tool is unable to solve the problem).

Tab. 4 presents the aggregated performance of LPI perturbations, revealing distinct vulnerability
patterns among the three tasks. As the perturbation intensity 𝑧 increases (i.e., more aggressive
perturbations), all tasks exhibit the expected trend where problems become easier to attack and

, Vol. 1, No. 1, Article . Publication date: September 2025.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Verifying Structural Robustness of Deep Neural Network 15

Lowpass Echo Highpass Blur 0 Blur 45 Blur 90
0

20

40

60

80

100

S
ol

ve
d

In
st

an
ce

s
(%

)

93 89 92 96 95 9695
90

95

77
81 77

39

20

34

65
70 67

(a) Time-invariant perturbations.

Linear Sinusoidal Gaussian
0

20

40

60

80

100

S
ol

ve
d

In
st

an
ce

s
(%

)

61

38
4547

25
29

41

23 27

NeuralSat

αβ-Crown (I)

αβ-Crown (N)

(b) Time-varying perturbations.

Fig. 6. VeriS performances using different underlying verification tools.

harder to verify. KWS shows remarkable robustness, with no attack at 𝑧 ∈ [0.0, 0.1] and 𝑧 ∈ [0.0, 0.5]
and only 45 attacks at maximum intensity. This resilience can be attributed to the structured nature
of speech signals, where filtering operations preserve the essential acoustic features necessary for
keyword recognition. In contrast, ECG demonstrates high vulnerability, with the number of attacks
increasing from 5 to 174 instances as 𝑧 grows.

Tab. 5 shows the verification results on LPV perturbations, revealing a different pattern compared
to LPI results. Notably, no successful attacks were found across any task or perturbation intensity
level, indicating that LPV perturbations used preserve the structural integrity of the input signals.
However, as perturbation intensity increases, verification becomes increasingly challenging, with
the number of verified instances decreasing and timeout instances growing substantially. KWS
demonstrates particularly challenging verification characteristics, with verified instances dropping
substantially from 281 to 19 as perturbation intensity increases. This difficulty stems from the
longer input sequences in KWS tasks (4000) compared to ECG tasks (2714), which result in larger
networks (e.g., 48M vs 22M neurons) when combined with LPV subnetworks.

5.3 RQ3: Compatibility with Existing Verification Tools

One of the contributions of VeriS lies in enabling existing verification tools to handle SR problems
that were previously impossible to express or solve. Fig. 6 demonstrates this compatibility across
different verifier configurations, though with varying degrees of success depending on perturbation
complexity and verifier configurations.
For simpler perturbations like LPI, the transformation proves highly effective, with solved

percentages reaching 95% for Highpass and Lowpass, and 96% for Motion Blur 0 and 90. However,
more complex perturbations present significant challenges: while Linear LPV perturbations achieve
moderate verification rates (up to 61%), Gaussian and Sinusoidal patterns exhibit lower rates due to
their intrinsic computational complexity. Note that LPV problems are harder than LPI ones as LPV
networks are a lot larger as in Tab. 1. This performance variation reflects the inherent difficulty
of the underlying mathematical transformations rather than limitations in VeriS compatibility.
The key achievement is that existing verifiers can now solve these structured robustness problems,
whereas before VeriS such verification was impossible.

VeriS with backbone 𝛼𝛽-Crown worked well with input splitting (I) configuration, while neuron
splitting (N) struggles to solve many problems. This performance pattern aligns with VeriS’s

, Vol. 1, No. 1, Article . Publication date: September 2025.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Anon.

Tab. 6. VeriS performances on LPV perturbations (solved/unsolved)

Variant z ∈ [0.0, 0.1] z ∈ [0.0, 0.2] z ∈ [0.0, 0.3]

Unoptimized 0/648 0/648 0/648

Optimized 521/127 283/365 143/505

formulation design, which reduces the effective input dimension to a single dimension 𝑧, making
input splitting strategies particularly effective for space exploration. Conversely, NeuralSat, which
automatically selects input or neuron splitting depending on the input problem, allowed VeriS to
solve many problems and maintain high performance across perturbation types and domains.

5.4 RQ4: Effectiveness of VeriS Optimizations

We compare the performance of VeriS when it is unoptimized (i.e., the original formulation of
the perturbation subnetwork 𝑃𝑧 as shown in Eq. 7) and optimized (e.g., compressing layers and
converting to ReLU as shown in Eq. 7). Note that we only show for LPV problems because the
perturbation subnetwork 𝑃𝑧 of LPI transformations already has just one linear layer (e.g., no
activation function).
Tab. 6 shows that optimization is critically necessary. All unoptimized problems fail to solve

within the time limit, with all 648 instances per perturbation level resulting in timeouts. In con-
trast, the optimized formulation successfully solves up to 80% (521 instances) at 𝑧 = 0.1, 44% (283
instances) at 𝑧 = 0.2, and 22% (143 instances) at 𝑧 = 0.3. Performance degrades when perturbation
strength increases because it creates a larger input space to explore, thus, problems are more
challenging to solve. More specifically, larger 𝑧 causes more imprecise abstraction, given that LPV
problems inherently has many neurons to abstract (e.g., 48M), making the problems unsolvable.
Additionally, as shown in Fig. 5, the abstraction of the absolute is less precise compared to the
one using ReLUs, and the imprecision propagates through the network resulting in being unsolv-
able. This substantial improvement highlights how the ReLU conversion optimization transforms
computationally intractable verification problems into solvable ones for existing verifiers.

5.5 RQ5: Comparison to Overapproximation Approaches

The abstraction-based approach in [37, 43] uses an over-approximation for verifying a subset of
LPI properties for image classifiers. They work by computing the worst-case of the SR pertur-
bation (overapproximated bounds of perturbed inputs) under some assumptions, e.g., assuming
convolutional perturbation with the kernel values are from [0, 1] and summing to 1 [37], or pixel-
level perturbations under some spatial smoothness constraints [43]. In addition, the considered
robustness is strictly less expressive than our LPI specification because it does not consider the
constraints among kernel elements and interactions between kernels and input, which are crucial
for structural perturbations.

To compare this approach with VeriS, we extend it to handle arbitrary kernels to capture VeriS’s
specifications with kernel bounds (𝐾𝑚𝑖𝑛, 𝐾𝑚𝑎𝑥), where 𝐾𝑚𝑖𝑛 < 0 < 𝐾𝑚𝑎𝑥 . It computes upper (𝑢𝑏)
and lower (𝑙𝑏) bounds for outputs by analyzing input neighborhoods of the kernel size, then
computes bounds as:

𝑢𝑏 = max{𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟, 0} × 𝐾𝑚𝑎𝑥 +min{𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟, 0} × 𝐾𝑚𝑖𝑛

𝑙𝑏 = min{𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟, 0} × 𝐾𝑚𝑎𝑥 +max{𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟, 0} × 𝐾𝑚𝑖𝑛

(11)

, Vol. 1, No. 1, Article . Publication date: September 2025.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Verifying Structural Robustness of Deep Neural Network 17

Tab. 7. Performances of Overapproximation and VeriS approaches on SR perturbations (unsat/sat/timeout)

Method Lowpass Echo Highpass Blur 0 Blur 45 Blur 90

Overapproximation 0/630/18 0/648/0 0/648/0 0/540/0 0/540/0 0/540/0

VeriS 485/121/42 485/96/67 513/87/48 386/133/21 330/185/25 383/138/19

where max{𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟, 0} and min{𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟, 0} are the positive and negative parts of the neigh-
borhood, respectively. Intuitively, these equations perform a standard interval propagation for
the output by considering the worst-case of the perturbation. The verification problem of over-
approximation approach [37, 43] is then formulated as LR specification as:

∀𝑥 ∈ [𝑙𝑏,𝑢𝑏] =⇒ 𝑁 (𝑥) = 𝑁 (𝑥)
The results in Tab. 7 using LPI benchmarks, which are the primary focus of the abstraction-based

approach, show that the specifications generated by the over-approximation approach are all
violations, e.g., counterexamples are found for all problems. It is due to either large intervals of
inputs created by the over-approximation or the high-dimensional input space (e.g., the same as
the original input size). Even for the smallest perturbation strength of 0.1, none of these properties
could be verified for any networks considered in our evaluation. Note that those counterexamples
are considered as spurious counterexamples since they do not comply with SR constraints. In
contrast, VeriS was able to verify many properties across perturbation strengths and types. More
importantly, when VeriS found counterexamples, they are all valid counterexamples that satisfy
the SR constraints.

6 Threats to Validity

Regarding threats to internal validity, we built VeriS on top of established verification tools (𝛼𝛽-
Crown and NeuralSat) rather than implementing verification algorithms from scratch, thereby
leveraging extensively tested codebases. We validated our algorithm through unit testing, including
verification that identity transformations are produced when 𝑧 = 0 and that maximum perturbations
are produced when 𝑧 = 1 for both LPI and LPV specifications.

Regarding threats to the generalizability of our results, our evaluation focuses primarily on audio,
health and image domains. This domain selection was motivated by the natural applicability of
SR, but it may limit the application of our work to other domains where different types of SR are
relevant. Furthermore, our LPV evaluation was restricted to time-warping perturbations. Other LPV
perturbations such as complex spatial transformations may exhibit different verification behaviors.
Regarding threats to the validity of our metrics and experimental design, we used standard

verification metrics (number of solved instances, timeout, etc.) that are well-established in the
DNN verification literature [2, 5, 6, 55], ensuring comparability with prior work. However, these
metrics may not fully capture the practicality of SR verification compared to LR approaches. Our
comparison in §5.5 relies on constructing interval bounds that may not represent the tightest
possible approximation, potentially affecting the fairness of the comparison.

7 Related Work

LPI and LPV are common in many tasks and applications. LPV perturbations have been applied in
machine learning for sequence alignment [11] and pattern recognition [41, 50], such as managing
temporal variations in computer vision [66], audio processing for signal analysis [36], enhanc-
ing activity recognition through data augmentation [54], and improving accuracy in time series
classification by applying temporal modifications [27]. LPI perturbations have been extensively

, Vol. 1, No. 1, Article . Publication date: September 2025.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Anon.

investigated in computer vision, by assessing DNN models against uniform corruptions [22, 32, 51]
and developing consistent training algorithms [61]. In audio processing, uniform acoustic charac-
teristics have been utilized for speaker verification [13] and device-consistent classification [23].
Despite being widely used in practice, the robustness of DNNs against LPI and LPV perturbations
has not been formally defined or verified, which is the focus of this work.
The work in [37, 43], as mentioned in §5.5, considered a limited subset of our defined LPI

properties, e.g., restricting convolution kernels to values in [0, 1] that sum to 1 [37], or pixel-
level spatial smoothness constraints [43]. Those approaches compute worst-case bounds given
the perturbation boundaries and formulate the problem as a standard LR verification task. While
enabling existing verification techniques, the resulting overapproximated spaces makes the work
ineffective in practice and unable to solve many problems (as illustrated in §5.5). Additionally,
they do not consider LPV properties, which represent an important class of perturbations and
is much more challenging to verify as shown in §5.1. VeriS addresses both complete LPI and
LPV properties through an approach that incorporates perturbation subnetworks directly into the
network architecture.
DNN verification work has primarily focused on LR specifications [5, 15, 19, 29, 65], in which

specifications are created by adding small perturbations to each input independently. However, no
prior work has focused specifically on verifying SR such as LPI and LPV specifications. To the best
of our knowledge, VeriS is the first framework to define and verify SR properties for DNNs.

Constraint-based solvers, like Planet [17] and Marabou [62], which encode the DNN verifica-
tion problem as an SMT formula, are potentially capable of encoding complex constraints in SR
properties, but they do not scale sufficiently to handle realistic DNNs [2, 6]. In contrast, abstraction-
based DNN verifiers overapproximate nonlinear computations (e.g., ReLU) of the network using
abstract domains, such as interval [58], zonotope [44], polytope [45, 63], starset/imagestar [52], to
scale verification. Such techniques and tools include Mn-Bab [19], ReluVal [58], Neurify [57],
Nnv [53], Nnenum [1], 𝛼𝛽-Crown [59, 64, 65], etc. This work leverages two state-of-the-art
abstraction-based DNN verifiers, 𝛼𝛽-Crown and NeuralSat, to solve SR problems efficiently.

8 Conclusion and Future Work

This work introduced SR properties that extend DNN verification beyond the limitations of tradi-
tional LR formulations. By defining LPI and LPV perturbation classes, we captured the structured
transformations that occur in many domains but cannot be expressed through interval constraints.
The key insight of our approach lies in transforming complex SR verification problems into LR
ones, allowing existing verification tools to be solve problems they could not previously handle.
VeriS enables the verification of structural robustness of DNNs against a wide range of per-

turbation types. VeriS provides a tractable, compatible with state-of-the-art DNN verifiers, and
optimized representation of the structured perturbations. It allows for an efficient verification of
DNNs for multi-domain tasks under diverse perturbations, with 94% and 49% of verified properties
for LPI and LPV, respectively.
Several promising directions emerge from this work. The perturbation subnetwork encoding

approach can be extended to capture additional classes of structured transformations beyond
convolution-based and time-warping perturbations, including elastic deformations [9], perspective
transformations [35], and domain-specific perturbations in robotics and autonomous systems such
as those in [20, 42]. Furthermore, the general principle of encoding complex verification properties as
neural network components suggests broader applications beyond robustness analysis, potentially
enabling verification of other structured properties such as fairness and domain adaptation [4, 46].

, Vol. 1, No. 1, Article . Publication date: September 2025.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Verifying Structural Robustness of Deep Neural Network 19

9 Data Availability

VeriS is available at: https://anonymous.4open.science/r/VeriS/

References

[1] Stanley Bak. 2021. nnenum: Verification of ReLU Neural Networks with Optimized Abstraction Refinement. In NASA
Formal Methods Symposium. Springer, 19–36. doi:10.1007/978-3-030-76384-8_2

[2] Stanley Bak, Changliu Liu, and Taylor Johnson. 2021. The Second International verification of Neural Networks
Competition (VNN-COMP 2021): Summary and Results. arXiv preprint arXiv:2109.00498 (2021). doi:10.48550/arXiv.
2109.00498

[3] Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis, Aditya Nori, and Antonio Criminisi. 2016.
Measuring neural net robustness with constraints. Advances in neural information processing systems 29 (2016).

[4] Sumon Biswas and Hridesh Rajan. 2023. Fairify: Fairness verification of neural networks. In 2023 ieee/acm 45th
international conference on software engineering (icse). IEEE, 1546–1558.

[5] Christopher Brix, Stanley Bak, Taylor T Johnson, and Haoze Wu. 2024. The Fifth International Verification of Neural
Networks Competition (VNN-COMP 2024): Summary and Results. arXiv preprint arXiv:2412.19985 (2024).

[6] Christopher Brix, Mark Niklas Müller, Stanley Bak, Taylor T Johnson, and Changliu Liu. 2023. First three years of the
international verification of neural networks competition (VNN-COMP). International Journal on Software Tools for
Technology Transfer (2023), 1–11. doi:10.48550/arXiv.2301.05815

[7] Rudy Bunel, Jingyue Lu, Ilker Turkaslan, Philip HS Torr, Pushmeet Kohli, and M Pawan Kumar. 2020. Branch and
bound for piecewise linear neural network verification. Journal of Machine Learning Research 21, 42 (2020), 1–39.

[8] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness of neural networks. In 2017 ieee
symposium on security and privacy (sp). Ieee, 39–57.

[9] Isaac Chao, Ulrich Pinkall, Patrick Sanan, and Peter Schröder. 2010. A simple geometric model for elastic deformations.
ACM transactions on graphics (TOG) 29, 4 (2010), 1–6.

[10] Jinyin Chen, Chengyu Jia, Yunjie Yan, Jie Ge, Haibin Zheng, and Yao Cheng. 2024. A miss is as good as a mile:
Metamorphic testing for deep learning operators. Proceedings of the ACM on Software Engineering 1, FSE (2024),
2005–2027.

[11] Marco Cuturi and Mathieu Blondel. 2017. Soft-dtw: a differentiable loss function for time-series. In International
conference on machine learning. PMLR, 894–903.

[12] Wei Dai, Chia Dai, Shuhui Qu, Juncheng Li, and Samarjit Das. 2017. Very deep convolutional neural networks for raw
waveforms. In 2017 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, 421–425.

[13] Brecht Desplanques, Jenthe Thienpondt, and Kris Demuynck. 2020. Ecapa-tdnn: Emphasized channel attention,
propagation and aggregation in tdnn based speaker verification. arXiv preprint arXiv:2005.07143 (2020).

[14] Swaroopa Dola, Matthew B Dwyer, and Mary Lou Soffa. 2023. Input Distribution Coverage: Measuring Feature
Interaction Adequacy in Neural Network Testing. ACM Transactions on Software Engineering and Methodology 32, 3
(2023), 1–48. https://dl.acm.org/doi/10.1145/3576040

[15] Hai Duong, ThanhVu Nguyen, and Matthew B Dwyer. 2025. NeuralSAT: A High-Performance Verification Tool for
Deep Neural Networks. In International Conference on Computer Aided Verification. to appear.

[16] Hai Duong, Dong Xu, Thanhvu Nguyen, and Matthew B. Dwyer. 2024. Harnessing Neuron Stability to Improve DNN
Verification. Proc. ACM Softw. Eng. 1, FSE, Article 39 (2024), 23 pages. doi:10.1145/3643765

[17] Ruediger Ehlers. 2017. Formal verification of piece-wise linear feed-forward neural networks. In International
Symposium on Automated Technology for Verification and Analysis. Springer, 269–286. doi:10.1007/978-3-319-68167-2_19

[18] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain Muller. 2019. Adver-
sarial attacks on deep neural networks for time series classification. In 2019 International joint conference on neural
networks (IJCNN). IEEE, 1–8.

[19] Claudio Ferrari, Mark Niklas Mueller, Nikola Jovanović, and Martin Vechev. 2022. Complete Verification via Multi-
Neuron Relaxation Guided Branch-and-Bound. In International Conference on Learning Representations. doi:10.48550/
arXiv.2205.00263

[20] Rod Frehlich. 2001. Errors for space-based Doppler lidar wind measurements: Definition, performance, and verification.
Journal of Atmospheric and Oceanic Technology 18, 11 (2001), 1749–1772.

[21] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572 (2014).

[22] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. 2022. Masked autoencoders
are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
16000–16009.

, Vol. 1, No. 1, Article . Publication date: September 2025.

https://anonymous.4open.science/r/VeriS/
https://doi.org/10.1007/978-3-030-76384-8_2
https://doi.org/10.48550/arXiv.2109.00498
https://doi.org/10.48550/arXiv.2109.00498
https://doi.org/10.48550/arXiv.2301.05815
https://dl.acm.org/doi/10.1145/3576040
https://doi.org/10.1145/3643765
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.48550/arXiv.2205.00263
https://doi.org/10.48550/arXiv.2205.00263

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Anon.

[23] Hu Hu, Chao-Han Huck Yang, Xianjun Xia, Xue Bai, Xin Tang, Yajian Wang, Shutong Niu, Li Chai, Juanjuan Li,
Hongning Zhu, et al. 2021. A two-stage approach to device-robust acoustic scene classification. In ICASSP 2021-2021
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 845–849.

[24] Qiang Hu, Yuejun Guo, Xiaofei Xie, Maxime Cordy, Lei Ma, Mike Papadakis, and Yves Le Traon. 2024. Test optimization
in dnn testing: a survey. ACM Transactions on Software Engineering and Methodology 33, 4 (2024), 1–42.

[25] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. 2017. Safety verification of deep neural networks. In
International conference on computer aided verification. Springer, 3–29. doi:10.1007/978-3-319-63387-9_1

[26] The PhysioNet/Computing in Cardiology Challenge. 2017. Cardiac Arrhythmia Dataset. https://physionet.org/
content/challenge-2017/1.0.0/

[27] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain Muller. 2019. Deep
learning for time series classification: a review. Data mining and knowledge discovery 33, 4 (2019), 917–963.

[28] Fazle Karim, Somshubra Majumdar, and Houshang Darabi. 2020. Adversarial attacks on time series. IEEE transactions
on pattern analysis and machine intelligence 43, 10 (2020), 3309–3320.

[29] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. 2017. Towards proving the adversarial
robustness of deep neural networks. Proc. 1st Workshop on Formal Verification of Autonomous Vehicles (FVAV), pp. 19-26
(2017).

[30] Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding deep learning system testing using surprise adequacy. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE, 1039–1049. https://dl.acm.org/doi/10.
1109/ICSE.2019.00108

[31] Klas Leino, Zifan Wang, and Matt Fredrikson. 2021. Globally-robust neural networks. In International Conference on
Machine Learning. PMLR, 6212–6222.

[32] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. 2022. A convnet
for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 11976–11986.

[33] Yu-Seung Ma, Shin Yoo, and Taeho Kim. 2021. Selecting test inputs for DNNs using differential testing with subspe-
cialized model instances. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 1467–1470.

[34] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. 2017. Towards deep
learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017).

[35] Jack Mezirow. 1978. Perspective transformation. Adult education 28, 2 (1978), 100–110.
[36] Meinard Müller. 2015. Fundamentals of music processing: Audio, analysis, algorithms, applications. Vol. 5. Springer.
[37] Mallek Mziou-Sallami and Faouzi Adjed. 2022. Towards a Certification of Deep Image Classifiers against Convolutional

Attacks.. In ICAART (2). 419–428.
[38] Paarth Neekhara, Shehzeen Hussain, Prakhar Pandey, Shlomo Dubnov, Julian McAuley, and Farinaz Koushanfar. 2019.

Universal adversarial perturbations for speech recognition systems. arXiv preprint arXiv:1905.03828 (2019).
[39] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Ananthram Swami. 2016.

The limitations of deep learning in adversarial settings. In 2016 IEEE European symposium on security and privacy
(EuroS&P). IEEE, 372–387.

[40] Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2023. Physically based rendering: From theory to implementation. MIT
Press.

[41] Thanawin Rakthanmanon, Bilson Campana, Abdullah Mueen, Gustavo Batista, Brandon Westover, Qiang Zhu, Jesin
Zakaria, and Eamonn Keogh. 2012. Searching and mining trillions of time series subsequences under dynamic time
warping. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining.
262–270.

[42] Vijay Rengarajan, Yogesh Balaji, and AN Rajagopalan. 2017. Unrolling the shutter: Cnn to correct motion distortions.
In Proceedings of the IEEE Conference on computer Vision and Pattern Recognition. 2291–2299.

[43] Anian Ruoss, Maximilian Baader, Mislav Balunović, andMartin Vechev. 2021. Efficient certification of spatial robustness.
In Proceedings of the AAAI conference on artificial intelligence, Vol. 35. 2504–2513.

[44] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin Vechev. 2018. Fast and effective
robustness certification. Advances in neural information processing systems 31 (2018). https://dl.acm.org/doi/10.5555/
3327546.3327739

[45] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. 2019. An abstract domain for certifying neural
networks. Proceedings of the ACM on Programming Languages 3, POPL (2019), 1–30. doi:10.1145/3290354

[46] Bing Sun, Jun Sun, Ting Dai, and Lijun Zhang. 2021. Probabilistic verification of neural networks against group
fairness. In International Symposium on Formal Methods. Springer, 83–102.

[47] Youcheng Sun, Xiaowei Huang, Daniel Kroening, James Sharp, Matthew Hill, and Rob Ashmore. 2019. Structural Test
Coverage Criteria for Deep Neural Networks. ACM Transactions on Embedded Computing Systems (TECS) 18, 5s (2019),
1–23. doi:10.1145/3358233

, Vol. 1, No. 1, Article . Publication date: September 2025.

https://doi.org/10.1007/978-3-319-63387-9_1
https://physionet.org/content/challenge-2017/1.0.0/
https://physionet.org/content/challenge-2017/1.0.0/
https://dl.acm.org/doi/10.1109/ICSE.2019.00108
https://dl.acm.org/doi/10.1109/ICSE.2019.00108
https://dl.acm.org/doi/10.5555/3327546.3327739
https://dl.acm.org/doi/10.5555/3327546.3327739
https://doi.org/10.1145/3290354
https://doi.org/10.1145/3358233

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Verifying Structural Robustness of Deep Neural Network 21

[48] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.
2013. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013).

[49] Richard Szeliski. 2022. Computer vision: algorithms and applications. Springer Nature.
[50] Romain Tavenard, Johann Faouzi, Gilles Vandewiele, Felix Divo, Guillaume Androz, Chester Holtz, Marie Payne,

Roman Yurchak, Marc Rußwurm, Kushal Kolar, et al. 2020. Tslearn, a machine learning toolkit for time series data.
Journal of machine learning research 21, 118 (2020), 1–6.

[51] Hugo Touvron, Matthieu Cord, and Hervé Jégou. 2022. Deit iii: Revenge of the vit. In European conference on computer
vision. Springer, 516–533.

[52] Hoang-Dung Tran, Neelanjana Pal, Diego Manzanas Lopez, Patrick Musau, Xiaodong Yang, Luan Viet Nguyen,
Weiming Xiang, Stanley Bak, and Taylor T Johnson. 2021. Verification of piecewise deep neural networks: a star set
approach with zonotope pre-filter. Formal Aspects of Computing 33 (2021), 519–545.

[53] Hoang-Dung Tran, Neelanjana Pal, Patrick Musau, Diego Manzanas Lopez, Nathaniel Hamilton, Xiaodong Yang,
Stanley Bak, and Taylor T Johnson. 2021. Robustness Verification of Semantic Segmentation Neural Networks Using
Relaxed Reachability. In International Conference on Computer Aided Verification. Springer, 263–286. doi:10.1007/978-3-
030-81685-8_12

[54] Terry T Um, Franz MJ Pfister, Daniel Pichler, Satoshi Endo, Muriel Lang, Sandra Hirche, Urban Fietzek, and Dana
Kulić. 2017. Data augmentation of wearable sensor data for parkinson’s disease monitoring using convolutional neural
networks. In Proceedings of the 19th ACM international conference on multimodal interaction. 216–220.

[55] VNN-COMP 2025. 2025. VNN-COMP 2025 Slides. https://docs.google.com/presentation/d/1ep-
hGGotgWQF6SA0JIpQ6nFqs2lXoyuLMM-bORzNvrQ/edit?usp=sharing

[56] Longtian Wang, Xiaofei Xie, Xiaoning Du, Meng Tian, Qing Guo, Zheng Yang, and Chao Shen. 2023. DistXplore:
Distribution-guided testing for evaluating and enhancing deep learning systems. In Proceedings of the 31st ACM Joint
European Software Engineering Conference and Symposium on the Foundations of Software Engineering. 68–80.

[57] ShiqiWang, Kexin Pei, JustinWhitehouse, Junfeng Yang, and Suman Jana. 2018. Efficient formal safety analysis of neural
networks. Advances in Neural Information Processing Systems 31 (2018). https://dl.acm.org/doi/10.5555/3327345.3327533

[58] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018. Formal security analysis of neural
networks using symbolic intervals. In 27th USENIX Security Symposium (USENIX Security 18). 1599–1614. https:
//dl.acm.org/doi/10.5555/3277203.3277323

[59] ShiqiWang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter. 2021. Beta-CROWN: Efficient
Bound Propagation with Per-neuron Split Constraints for Complete and Incomplete Neural Network Robustness
Verification. Advances in Neural Information Processing Systems 34 (2021), 29909–29921. doi:10.48550/arXiv.2103.06624

[60] P. Warden. 2018. Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition. ArXiv e-prints (April
2018). arXiv:1804.03209 [cs.CL] https://arxiv.org/abs/1804.03209

[61] Ross Wightman, Hugo Touvron, and Hervé Jégou. 2021. Resnet strikes back: An improved training procedure in timm.
arXiv preprint arXiv:2110.00476 (2021).

[62] Haoze Wu, Omri Isac, Aleksandar Zeljić, Teruhiro Tagomori, Matthew Daggitt, Wen Kokke, Idan Refaeli, Guy Amir,
Kyle Julian, Shahaf Bassan, et al. 2024. Marabou 2.0: a versatile formal analyzer of neural networks. In International
Conference on Computer Aided Verification. Springer, 249–264.

[63] Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei Chang, Minlie Huang, Bhavya Kailkhura, Xue Lin, and
Cho-Jui Hsieh. 2020. Automatic perturbation analysis for scalable certified robustness and beyond. Advances in Neural
Information Processing Systems 33 (2020), 1129–1141. https://dl.acm.org/doi/10.5555/3495724.3495820

[64] Huan Zhang, Shiqi Wang, Kaidi Xu, Linyi Li, Bo Li, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter. 2022. General cutting
planes for bound-propagation-based neural network verification. Proceedings of the 36th International Conference on
Neural Information Processing Systems (2022). https://dl.acm.org/doi/10.5555/3600270.3600391

[65] Duo Zhou, Christopher Brix, Grani A Hanasusanto, and Huan Zhang. 2024. Scalable Neural Network Verification
with Branch-and-bound Inferred Cutting Planes. arXiv preprint arXiv:2501.00200 (2024).

[66] Feng Zhou and Fernando De la Torre. 2015. Generalized canonical time warping. IEEE transactions on pattern analysis
and machine intelligence 38, 2 (2015), 279–294.

[67] Feng Zhou and Fernando Torre. 2009. Canonical time warping for alignment of human behavior. Advances in neural
information processing systems 22 (2009).

[68] Tahereh Zohdinasab, Vincenzo Riccio, Alessio Gambi, and Paolo Tonella. 2021. DeepHyperion: exploring the feature
space of deep learning-based systems through illumination search. In Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 79–90. doi:10.1145/3460319.3464811

, Vol. 1, No. 1, Article . Publication date: September 2025.

https://doi.org/10.1007/978-3-030-81685-8_12
https://doi.org/10.1007/978-3-030-81685-8_12
https://docs.google.com/presentation/d/1ep-hGGotgWQF6SA0JIpQ6nFqs2lXoyuLMM-bORzNvrQ/edit?usp=sharing
https://docs.google.com/presentation/d/1ep-hGGotgWQF6SA0JIpQ6nFqs2lXoyuLMM-bORzNvrQ/edit?usp=sharing
https://dl.acm.org/doi/10.5555/3327345.3327533
https://dl.acm.org/doi/10.5555/3277203.3277323
https://dl.acm.org/doi/10.5555/3277203.3277323
https://doi.org/10.48550/arXiv.2103.06624
https://arxiv.org/abs/1804.03209
https://arxiv.org/abs/1804.03209
https://dl.acm.org/doi/10.5555/3495724.3495820
https://dl.acm.org/doi/10.5555/3600270.3600391
https://doi.org/10.1145/3460319.3464811

	Abstract
	1 Introduction
	2 From Local to Structural Robustness
	2.1 Local Robustness (LR)
	2.2 Structural Robustness (SR)
	2.3 Challenges and Approach Overview
	2.4 Illustration Example

	3 The VeriS Approach
	3.1 LPI Formulation
	3.2 LPV Formulation
	3.3 Optimization

	4 Experimental Design
	4.1 Verification Benchmarks
	4.2 Verifiers and Experimental Setup

	5 Results and Analysis
	5.1 RQ1: VeriS performances on LPI and LPV perturbations
	5.2 RQ2: Attacks and Patterns
	5.3 RQ3: Compatibility with Existing Verification Tools
	5.4 RQ4: Effectiveness of VeriS Optimizations
	5.5 RQ5: Comparison to Overapproximation Approaches

	6 Threats to Validity
	7 Related Work
	8 Conclusion and Future Work
	9 Data Availability
	References

